Advertisement

Surveys in Geophysics

, 32:659 | Cite as

Solar Activity, Lightning and Climate

  • Devendraa Siingh
  • R. P. Singh
  • Ashok K. Singh
  • M. N. Kulkarni
  • A. S. Gautam
  • Abhay K. Singh
Article

Abstract

The physics of solar forcing of the climate and long term climate change is summarized, and the role of energetic charged particles (including cosmic rays) on cloud formation and their effect on climate is examined. It is considered that the cosmic ray-cloud cover hypothesis is not supported by presently available data and further investigations (during Forbush decreases and at other times) should be analyzed to further examine the hypothesis. Another player in climate is lightning through the production of NOx; this greenhouse gas, water vapour in the troposphere (and stratosphere) and carbon dioxide influence the global temperature through different processes. The enhancement of aerosol concentrations and their distribution in the troposphere also affect the climate and may result in enhanced lightning activity. Finally, the roles of atmospheric conductivity on the electrical activity of thunderstorms and lightning discharges in relation to climate are discussed.

Keywords

Solar irradiance Galactic cosmic rays Thunderstorm/Lightning Upper tropospheric water vapour Atmospheric chemistry Aerosols Climate 

Notes

Acknowledgments

This work was inspired by discussions which DS had with Prof. B.N. Goswami and suggestions given by him during his previous work on the role of cosmic rays in the Earth’s atmosphere. RPS acknowledges the facilities provided by the Head, Department of Physics. BHU, Varanasi. The authors thank the four anonymous reviewers for their critical comments which helped to improve this paper. They also express their gratitude to Prof. M. J. Rycroft for his valuable suggestions.This work was supported under the collaboration programme of IITM, Pune and BHU, Varanasi, and also partially supported under CAWSES programme (DS). The authors thank Mr Kirankumar Johare for help with correcting the figures.

References

  1. Altaratz O, Koren I, Yair Y, Price C (2010) Lightning response to smoke from Amazonian fires. Geophys Res Lett 37(L07801):1–6. doi: 10.1029/2010GL042679 Google Scholar
  2. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Shilva-Dias MAF(2004) Smoking rain clouds over the Amazon. Science 303:1337–1342. doi: 10.1126/Scienc.1092779 Google Scholar
  3. Aniol R (1952) Schwankungen der Gewitterhaufigkeit in Suddeutschland. Meteorologische Rundschau 3(4):55–56Google Scholar
  4. Armstrong WC (1987) Lightning triggered from the Earth’s magnetosphere as the source of synchronized whistlers. Nature 327:405–408Google Scholar
  5. Arnold NF, Robinson TR (2001) Solar magnetic flux influences on the dynamics of the winter middle atmosphere. Geophys Res Lett 28:2381–2384Google Scholar
  6. Austin J, Shindell D, Beagley SR, Brühl C, Dameris M, Manzini E, Nagashima T, Newman P, Pawson S, Pitari G, Rozanov E, Schnadt C, Shepherd TG (2003) Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos Chem Phys 3:1–27Google Scholar
  7. Baker MB, Christian HJ, Latham J (1995) A computational study of the relationships linking lightning frequency and other thundercloud parameters. Q J R Meteorol Soc 121:1525–1548Google Scholar
  8. Baker MB, Blyth AM, Christian HJ, Latham J, Miller KL, Gadian AM (1999) Relationships between lightning activity and various thundercloud parameters: satellite and modeling studies. Atmos Res 51:221–236. doi: 10.1016/S0169-8095(99)00009-5 Google Scholar
  9. Balachandran NK, Rind D (1995) Modeling the Effects of UV Variability and the QBO on the troposphere-stratosphere system 1. The middle atmosphere. J Clim 8:2058–2079Google Scholar
  10. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi biennial oscillation. Rev Geophys 39:179–229. doi: 10.1029/1999RG000073 Google Scholar
  11. Beard KV, Ochs HT III, Twohy CH (2004) Aircraft measurements of high average charges on cloud drops in layer clouds. Geophys Res Lett 31:L14111. doi: 10.1029/2004GL020465 Google Scholar
  12. Beer J, Joos Ch F, Lukasczyk Ch, Mende W, Siegenthaler U, Stellmacher R (1994) 10Be as an indicator of solar variability and climate. In: Nesme-Ribes E (ed) The solar engine and its influence on terrestrial atmosphere and climate. ENATO ASI Series 25, pp 221–233Google Scholar
  13. Benestad RE, Schmidt GA (2009) Solar trends and global warming. J Geophys Res 114:D14101. doi: 10.1029/2008JD011639 Google Scholar
  14. Bennett AJ, Harrison RG (2009) Evidence for global circuit current flow through water droplet layers. J Atmos Solar Terr Phys 71:1219–1221. doi: 10.1016/j.jastp.2009.04.011 Google Scholar
  15. Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (1984) Milankovitch and Climate, in NATO ASI, series, 126. D Reidel Publishing Company, Dordrecht, pp 895Google Scholar
  16. Berger A, Loutre MF, Crucifi M (2003) The Earth’s climate in the next hundred thousand years (100 kyr). Surv Geophys 24:117–138Google Scholar
  17. Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:71–202Google Scholar
  18. Boccippio DJ (2001) Lightning scaling relations revisited. J Atmos Sci 59:1086–1104Google Scholar
  19. Boeck WL, Suszcynsky DM, Light TE, Jacobson AR, Christian HJ, Goodman SJ, Buechler DE, Guillen JLL (2004) A demonstration of the capabilities of multi satellite observations of oceanic lightning. J Geophys Res 109:D17204. doi: 10.1029/2003JD004491 Google Scholar
  20. Bond DW, Steiger S, Zhang R, Tie X, Orville RE (2002) The importance of NOx production by lightning in the tropics. Atmos Environ 36:1509–1519Google Scholar
  21. Bondiou-Clergerie A, Lalande P, Roux F (2004) ORAGES a dedicated sensor for detection, localization and fine analysis of lightning flashes from space. Acta Astronautica 55:245–254Google Scholar
  22. Brasseur G, Schultz M, Granier C, Saunois M, Diehl T, Botzlet M, Roeckner E, Walters S (2006) Impact of climate change on the future chemical composition of the global troposphere. J Climate 19:3932–3951. doi: 10.1175/JCLI3832.1 Google Scholar
  23. Brooks CEP (1934) The variation of the annual frequency of thunderstorms in relation to sunspots. Q J Royal Met Soc 60:153–165Google Scholar
  24. Bucha V, Bucha V Jr (1998) Geomagnetic forcing of changes in climate and in the atmospheric Circulation. J Atmos Solar Terr Phys 60:145–169Google Scholar
  25. Cahalan RF, Wen GY, Harder JW, Pilewskie P (2010) Temperature responses to spectral solar variability on decadal time scales. Geophys Res Lett 37:L07705. doi: 10.1029/2010GL044571 Google Scholar
  26. Callis LB, Natarajan M, Lambeth J (2000) Calculated upper stratospheric effects of solar UV flux and NOy variations during the 11-year solar cycle. Geophys Res Lett 27:3869–3872Google Scholar
  27. Callis LB, Natarajan M, Lambeth J (2001) Solar-atmospheric coupling by electrons (SOLACE): 3. Comparisons of simulations, observations, 1979–1997, issues and implications. J Geophys Res 106:7523–7539Google Scholar
  28. Calogovic J, Albert C, Arnold F, Beer J, Desorgher L, Flueckiger EO (2010) Sudden cosmic ray decreases: No change of global cloud cover. Geophys Res Lett 37:L03802. doi: 10.1029/2009GL041327 Google Scholar
  29. Camp CD, Tung KK (2007) The influence of the solar cycle and QBO on the late winter stratospheric polar vortex. J Atmos Sci 64:1267–1283Google Scholar
  30. Carey LD, Buffalo KM (2007) Environmental control of cloud-to-ground lightning polarity in severe storms. Mon Wea Rev 135:1327–1353Google Scholar
  31. Carslaw KS (2009) Cosmic rays, clouds and climate. Nature 460:332–333Google Scholar
  32. Carslaw KS, Harrison RG, Kirkby J (2002) Cosmic rays, clouds and climate. Science 298:1732–1737Google Scholar
  33. Chilingarian A, Daryan A, Arakelyan K, Reymers A, Melkumyan L (2009) Thunderstorm correlated enhancements of cosmic ray fluxes detected at Mt. Aragats. In: Chilingarian A (ed) Proc. of Int. Symp. FORGES 2008, Nor-Amberd, Armenia, p 121Google Scholar
  34. Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WJ, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108. doi: 10.1029/2002JD002347
  35. Christiansen F, Haigh JD, Lundstedt H (2007) Influence of solar activity cycles on Earth’s climate. Final report task 700—summary report, conclusions and recommendations, ESTEC Contract no. 18453/04/NL/AR Issue 1, September 4, 2007, Danish National Space Center Scientific Report 2/2007, ISBN-10: 87-91694-12-4, ISBN-13: 978-87-91694-12-7Google Scholar
  36. Chronis T, Anagnostou E, Dinku T (2004) High frequency estimation of thunderstorms via satellite infrared and a long-range lightning network in Europe. Q Royal Meteo Soc 130: April issue Part B No. 599Google Scholar
  37. Chubenko AP, Amurina IV, Antonova VP, Kokobaev MM, Kryukov SV, Nam RA, Nesterova NM, Oskomov VV, Piscal VV, Ptitsyn MO, Sadykov TKh, Shepetov AL, Vildanova LI, Zybin KP, Gurevichet AV (2003) Effective growth of a number of cosmic ray electrons inside thundercloud. Phys Lett A 309:90–102. doi: 10.1016/S0375-9601(03)00062-8 Google Scholar
  38. Chubenko AP, Karashtin AN, Ryabov VA, Shepetov AL, Antonova VP, Kryukov SV, Mitko GG, Naumov AS, Pavljuchenko LV, Ptitsyn MO, SYa Shalamova, YuV Shlyugaev, Vildanova LI, Zybin KP, Gurevich AV (2009) Energy spectrum of lightning gamma emission. Phys Lett A 373:2953–2958. doi: 10.1016/j.physleta.2009.06.031 Google Scholar
  39. Crooks SA, Gray LJ (2005) Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J Clim 18:996–1015Google Scholar
  40. Damon PE, Jirikowic JL (1992) The Sun as a low-frequency harmonic oscillator. Radiocarbon 34(2):199–205Google Scholar
  41. Davidi A, Koren I, Remer L (2009) Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile. Atmos Chem Phys 9:8211–8221Google Scholar
  42. Del Genio AD, Mao-Sung Y, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys Res Lett 34:L16703. doi: 10.1029/2007GL030525 Google Scholar
  43. Delmonte B, Petit JR, Krinner G, Maggi V, Jouzel J, Udisti R (2005) Ice core evidence for secular variability and 200-year dipolar oscillations in atmospheric circulation over East Antarctica during Holocene. Clim Dyn 24. doi: 10.1007/s00382-005-0012-9
  44. Denton G, Karlen W (1973) Holocene climate variations: their pattern and possible cause. Quat Res 3(2):155–205Google Scholar
  45. Dickinson RE (1975) Solar variability and the lower atmosphere. Bull Am Meteor Soc 56:1240–1248Google Scholar
  46. Doherty RM, Stevenson DS, Johnson CE, Collins WJ, Sanderson MG (2006) Tropospheric ozone and El Niño–Southern Oscillation: Influence of atmospheric dynamics, biomass burning emissions, and future climate change. J Geophys Res 111:D19304. doi: 10.1029/2005JD006849 Google Scholar
  47. Duplissy J, Enghoff MB, Aplin KL, Arnold F, Aufmhoff H, Avngaard M, Baltensperger U, Bondo T, Bingham R, Carslaw K, Curtius J, David A, Fastrup B, Gagné S, Hahn F, Harrison RG, Kellett B, Kirkby J, Kulmala M, Laakso L, Laaksonen A, Lillestol E, Lockwood M, Mäkelä J, Makhmutov V, Marsh ND, Nieminen T, Onnela A, Pedersen E, Pedersen JOP, Polny J, Reichl U, Seinfeld JH, Sipilä M, Stozhkov Y, Stratmann F, Svensmark H, Svensmark J, Veenhof R, Verheggen B, Viisanen Y, Wagner PE, Wehrle G, Weingartner E, Wex H, Wilhelmsson M, Winkler PM (2010) Results from the CERN pilot CLOUD experiment. Atmos Chem Phys 10:1635–1647Google Scholar
  48. Dwyer JR, Smith DM (2005) A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations. Geophys Res Lett 32:L22804. doi: 10.1029/2005GL023848 Google Scholar
  49. Dwyer JR, Rassoul HK, Saleh Z, Uman MA, Jerauld J, Plumer JA (2005) X-ray bursts produced by laboratory sparks in air. Geophys Res Lett 32:L20809. doi: 10.1029/2005GL024027 Google Scholar
  50. Dwyer JR, Coleman LM, Lopez R, Saleh Z, Concha D, Brown M, Rassoul HK (2006) Runaway breakdown in the Jovian atmospheres. Geophys Res Lett 33:L22813. doi: 10.1029/2006GL027633 Google Scholar
  51. Eack KB, Beasley WH, Rust WD, Marshall TC, Stolzenburg M (1996) Initial results from simultaneous observation of X rays and electric fields in a thunderstorm. J Geophys Res 101(D23):29637–29640. doi: 10.1029/96JD01705 Google Scholar
  52. Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706. doi: 10.1029/2009GL037810 Google Scholar
  53. Eddy JA (1976) The maunder minimum. Science 192:1189–1202Google Scholar
  54. Ehhalt DH, Rohrer F (1994) The impact of commercial aircraft on tropospheric ozone. In: Brandy AR (ed) The chemistry of the atmosphere—oxidants and oxidation in the earth’s atmosphere, 7th BOC priestley conference. Lewisburg, Pennsylvania, pp 105–120. Woodhead Publishing Limited, ISBN 1 85573 798 1, CambridgeGoogle Scholar
  55. Enell C-F, Arnone E, Adachi T, Chanrion O, Verronen PT, Seppala A, Neuber T, Ulich T, Turunen E, Takahashi Y, R-Rl Hsu (2008) Parameterization of the chemical effect of sprites in the middle atmosphere. Ann Geophys 26:13–27Google Scholar
  56. Erlykin AD, Sloan T, Wolfendale AW (2009a) The search for cosmic ray effects in the clouds. J Atmos Solar Terr Phys 71:955–958Google Scholar
  57. Erlykin AD, Sloan T, Wolfendale AW (2009b) Solar activity and the mean global temperature. Environ Res Lett 4:014006. doi: 10.1088/1748-9326/4/1/014006 Google Scholar
  58. Erlykin AD, Parsons RD, Wolfendale AWW (2009c) Possible cosmic ray signatures in clouds? J Phys G Nucl Part Phys 36:115202Google Scholar
  59. Erlykin AD, Gyalai G, Kudela K, Sloan T, Wolfendale AW (2009d) On the correlation between cosmic ray intensity and cloud cover. J Atmos Solar Terr Phys 71:1794. doi: 10.1016/j.jastp.2009.06.012 Google Scholar
  60. Evan A, Heidinger T, Andrew K, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701. doi: 10.1029/2006GL028083 Google Scholar
  61. Eyers CJ, Addleton D, Atkinson K, Broomhead MJ, Christou R, Elliff T, Falk R, Gee I, Lee DS, Marizy C, Michot S, Middel J, Newton P, Norman P, Plohr M, Raper D, Stanciou N (2005) AERO2K global aviation emissions inventories for 2002 and 2025, QINETIQ for European commission under contract No. G4RD-CT-2000-00382, Farnborough, Hampshire, GU14 0LXGoogle Scholar
  62. Fadnavis S, Devendraa Siingh, Singh RP (2009) The mesospheric inversion layers and sprites. J Geophys Res 114:D23307. doi: 10.1029/2009JD011913 Google Scholar
  63. Fairbridge RW (1967) Encyclopedia of atmospheric sciences and astrogeology. In Fairbridge RW(ed) Encyclopedia of earth sciences series, vol 2. Reinhold, New YorkGoogle Scholar
  64. Farrell WM, Desch MD (2002) Solar proton events and the fair weather electric field at ground. Geophys Res Lett 29(9):1323–1326Google Scholar
  65. Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68–69Google Scholar
  66. Frame T, Gray LJ (2010) The 11-year solar cycle in ERA-40 data: an update to 2008. J Clim 23:2213–2222Google Scholar
  67. Frick P, Galyagin D, Hoyt DV, Nesme-Ribes E, Schatten KH, Sokoloff D, Zakharov V (1997) Wavelet analysis of solar activity recorded by sunspot groups. Astron Astrophys 328:670–681Google Scholar
  68. Friis-Christensen E, Lassen K (1991) Length of the solar-cycle - an indicator of solar-activity closely associated with climate. Science 254(5032):698–700Google Scholar
  69. Fritz H (1878) Die wichtigsten periodischen Erscheinungen der Meteorologie und Kosmologie. In: Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem, Deel III, HaarlemGoogle Scholar
  70. Fröhlich C (2006) Solar irradiance iariability since 1978: revision of the PMOD composite during solar cycle 21. Space Sci Rev 125:53–65. doi: 10.1007/s11214-006-9046-5 Google Scholar
  71. Fröhlich C, Lean J (1998) The sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys Res Lett 25:4377–4380Google Scholar
  72. Fullekrug M, Fraser-Smith AC (1996) Further evidence for a global correlation of the Earth-ionosphere cavity resonances. Geophys Res Lett 23:2773–2776Google Scholar
  73. Futyan JM, Del Genio AD (2007) Relationships between lightning and properties of convective cloud clusters. Geophys Phys Lett 34:L15705. doi: 10.1029/2007GL030227 Google Scholar
  74. Galloway JM, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vörösmarty C (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226Google Scholar
  75. Ganguly ND (2010) Influence of solar proton events during the declining phase of solar cycle 23 on the total ozone concentration in India. Int J Remote Sens 31(2):313–322Google Scholar
  76. Gleisner H, Thejll P (2003) Patterns of tropospheric response to solar variability. Geophys Res Lett 30:1711. doi: 10.1029/2003GL017129 Google Scholar
  77. Gopalswamy N (2004) A global picture of CMEs in the inner heliosphere. In: Poletto G, Suess ST (eds) The sun and the heliosphere as an integrated system, vol 317 of Astrophysics and Space Science Library. Kluwer, Dordrecht, pp 201–251Google Scholar
  78. Gordillio-Vazquez FJ (2008) Air plasma kinetics under the influence of sprites. J Phys D Appl Phys 41(234016):33. doi: 10.1088/0022-3727/41/23/234016 Google Scholar
  79. Granier C, Artaxo P, Reeves CE (eds) (2004) Emissions of atmospheric trace compounds. Kluwer Acad. Publ., Dordrecht, p 546 ppGoogle Scholar
  80. Gray LJ, Haigh JD, Harrison RG (2005) A review of the influence of solar changes on the Earth’s climate. Hadley Centre technical note 62, The UK Met OfficeGoogle Scholar
  81. Gray LJ, Rumbold S, Shine KP (2009) Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. J Atmos Sci 66:2402–2417Google Scholar
  82. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001. doi: 10.1029/2009RG000282
  83. Grenfell JL, Shindell DT, Grewe V (2003) Sensitivity studies of oxidative changes in the troposphere in 2010 using the GISS GCM. Atmos Chem Phys 3:1267–1283Google Scholar
  84. Grewe V (2007) Impact of climate variability on tropospheric ozone. Sci Total Environ 374:167–181. doi: 10.1016/j.scitotenv.2007.01.032 Google Scholar
  85. Gungle B, Krider EP (2006) Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms. J Geophys Res 111:D19203. doi: 10.1029/2005JD006802 Google Scholar
  86. Gurevich AV, Zybin KP (2001) Runaway breakdown and electric discharges in thunderstorms. Phys Uspekhi 44:1119Google Scholar
  87. Gurevich AV, Zybin KP (2005) Runaway breakdown and the Mysteries of lightning. Phys Today 58(5). doi: 10.1063/1.1995746
  88. Gurevich AV, Mitko GG, Antonova VP, Chubenko AP, Karashtin AN, Kryukov SV, Naumov AS, Pavljuchenko LV, Ptitsyn MO, Ryabov VA, Shalamova SYa, Shepetov AL, Shlyugaev VYu, Vildanova LI, Zybin KP (2009a) An intracloud discharge caused by extensive atmospheric shower. Phys Lett 373:3550–3553. doi: 10.1016/j.physleta.2009.07.085 Google Scholar
  89. Gurevich AV, Karashtin AN, Ryabov VA, Chubenko AP, Shepetov AL (2009b) Non-linear phenomena in ionosphere plasma. The influence of cosmic rays and the runaway electron breakdown on the thunderstorm discharges. Phys Uspekhi 179:779 (in Russian)Google Scholar
  90. Haigh JD (2003) The effects of solar variability on the Earth’s climate. Phil Trans Roy Soc A 361:95–111Google Scholar
  91. Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower stratospheric temperature. J Clim 18:3672–3691Google Scholar
  92. Haigh JD, Winning AR, Toumi R, Harder JW (2010) An influence of solar spectral variations on radiative forcing of climate. Nature 467:696–699. doi: 10.1038/nature09426 Google Scholar
  93. Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. Clim Process Clim Sensit 5:130–163Google Scholar
  94. Hansen J, Andrew L, Reto R, Makiko S (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218Google Scholar
  95. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcing. J Geophys Res 110:D18104. doi: 10.1029/2005JD005776 Google Scholar
  96. Hanslmeier A (2007) The sun and space weather, 2nd edn. Springer, New YorkGoogle Scholar
  97. Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN (2009) Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36:L07801. doi: 10.1029/2008GL036797 Google Scholar
  98. Harrison RG, Ambaum MHP (2008) Enhancement of cloud formation by droplet charging. Proc Roy Soc A 464:2561–2573. doi: 10.1098/rspa.2008.0009 Google Scholar
  99. Harrison RG, Ambaum MHP (2010) Observing Forbush decreases in cloud at Shetland. J Atmos Solar Terr Phys 72:1408–1414. doi: 10.1016/j.jastp.2010.09.025 Google Scholar
  100. Harrison RG, Stephenson DB (2006) Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc Roy Soc A 462. doi: 10.1098/rspa.2005.1628
  101. Harrison RG, Usoskin I (2010) Solar modulation in surface atmospheric electricity. J Atmos Solar Terr Phys 72:176–182. doi: 10.1016/j.jastp.2009.11.006 Google Scholar
  102. Hill DC, Allen MR, Gillet NP, Tett SFB, Stott PA, Jones GS, Ingram WJ, Mitchell JFB (2001) Natural and anthropogenic causes of recent climate change. In: India MB, Bonillo DL (eds) Detecting and modelling regional climate change. Springer, New York, pp 275–290Google Scholar
  103. Hofmann DJ, Oltmans SJ (1992) The effect of stratospheric water vapor on the heterogeneous reaction rate of ClONO2 and H2O for sulfuric acid aerosol. Geophys Res Lett 19(22):2211–2214Google Scholar
  104. Hofmann DJ, Butler JH, Tans PP (2008) A new look at atmospheric carbon dioxide. Atmos Env. doi: 10.1016/j.atmosenv.2008.12.028
  105. Hood L (2004) Effects of solar UV variability on the stratosphere. In: Pap J et al. (eds) Solar variability and its effect on the earth’s atmosphere and climate system, vol 14. AGU 87 Monograph Series. American Geophysical Union, Washington, DC, pp 283–303Google Scholar
  106. Hopkins AE (2003) Lightning NOx and tropospheric ozone formation in the NASA GISS global carbon model, GSSP (Graduate Student Summer Program of the NASA Goddard Space Flight Center’s Earth-Sun Exploration Division, in collaboration with the Goddard Earth Sciences and Technology Center of the University of Maryland Baltimore County). http://gest.umbc.edu/studentopp/2003gsspreports.html
  107. Howard J, Uman MA, Dwyer JR, Hill D, Biagi C, Saleh Z, Jerauld J, Rassoul HK (2008) Co-location of lightning leader X-ray and electric field change sources. Geophys Res Lett 35(13):L13817. doi: 10.1029/2008GL034134
  108. Hoyt DV, Schatten KH (1997) The role of the sun in climate change. Oxford University Press, New YorkGoogle Scholar
  109. Huntrieser H, Schlager H, Roiger A, Lichtenstern M, Schumann U, Kurz C, Brunner D, Schwierz C, Richter A, Stohl A (2007) Lightning-produced NOx over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems. Atmos Chem Phys 7:2987–3013Google Scholar
  110. Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, Mcintyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raytoo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciations cycles 1. Linear response to Milankovich forcing. Paleoceanography 7:701–738Google Scholar
  111. Inan US, Burgess WC, Wolf TG, Shafer DC (1988) Lightning associated precipitation of MeV electrons from inner radiation belts. Geophys Res Lett 15:172–175Google Scholar
  112. Inan US, Sampson WA, Taranenko YN (1996) Space-time structure of optical flashes and ionization changes produced by lightning EMP. Geophys Res Lett 23:133–136. doi: 10.1029/95GL03816 Google Scholar
  113. Inan US, Piddyachiy D, Peter WB, Sauvaud JA, Parrot M (2007) DEMETER satellite observations of lightning-induced electron precipitation. Geophys Res Lett 34:L07103. doi: 10.1029/2006GL029238 Google Scholar
  114. IPCC Climate Change (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 PaperbackGoogle Scholar
  115. Jackman CH, Cerniglia MC, Nielsen JE, Allen DJ, Zawodny JM, McPeters RD, Douglass AR, Rosenfield JE, Rood RB (1995) Two dimensional and three dimensional model simulations, measurements an interpretation of the influence of the October 1989 solar proton events on the middle atmosphere. J Geophys Res 100:11641–11660Google Scholar
  116. Jackman CH, DeLand MT, Labow GJ, Fleming EI, Lopez-Puertas M (2006) Satellite measurements of middle atmospheric impacts by solar proton events in solar cycle 23. Space Sci Rev 125:381–391Google Scholar
  117. Jaegle L, Jacob DJ, Brune WH, Wennberg PO (2001) Chemistry of HOx radicals in the upper troposphere. Atmos Environ 35:469–489Google Scholar
  118. Jayaratne ER, Saunders CPR, Hallett J (1983) Laboratory studies of the charging of soft-hail during ice crystal interactions. Q J Roy Meteor Soc 109:609–630Google Scholar
  119. Kandalgaonkar SS, Tinmaker MIR, Kulkarni JR, Nath AS and Kulkarni MK (2005) Spatio-temporal variability of lightning activity over the Indian region. J Geophys Res 110. doi: 10.1029/2004JD005631
  120. Kar SK, Liou Y-A, Ha K-J (2009) Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos Res 92:80–87. doi: 10.1016/j.atmosres.2008.09.004 Google Scholar
  121. Kazil J, Lovejoy ER, Barth MC, O’Brien K (2006) Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos Chem Phys 6:4905–4924Google Scholar
  122. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88Google Scholar
  123. Kernthaler SC, Toumi R, Haigh JD (1999) Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys Res Lett 26(7):863–865Google Scholar
  124. Khain A, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J R Meteotol Soc 131:2639–2663Google Scholar
  125. King JW (1975) Sun-weather relationships. Aeronaut Astronaut 13:10–19Google Scholar
  126. Kirkby J (2007) Cosmic rays and climate. Surv Geophys 28:333–375. doi: 10.1007/s10712-008-9030-6 Google Scholar
  127. Kniveton DR (2004) Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. J Atmos Solar Terr Phys 66:1135–1142. doi: 10.1016/j.jastp.2004.05.010 Google Scholar
  128. Knox RS, Dauglass DH (2010) Recent energy balance of Earth. Int J Geosci 1:99–101. doi: 10.4236/ijg.2010.13013 Google Scholar
  129. Kodera K, Kuroda Y (2002) Dynamical response to the solar cycle: winter stratopause and lower stratosphere. J Geophys Res 107(D24):4749. doi: 10.1029/2002JD002224 Google Scholar
  130. Kodera K, Matthes K, Shibata K, Langematz U, Kuroda Y (2003) Solar impact on the lower mesospheric subtropical jet in winter: a comparative study with general circulation model simulations. Geophys Res Lett 30:1315. doi: 10.1029/2002GL016124 Google Scholar
  131. Kokorowski M, Sample JG, Holzworth RH, Bering EA, Bale SD, Blake JB, Collier AB, Hughes ARW, Lay E, Lin RP, McCarthy MP, Millan RM, Moraal H, O’Brien TP, Parks GK, Pulupa M, Reddell BD (2006) Rapid fluctuations of stratospheric electric field following a solar energetic particle event. Geophys Res Lett 33:L20105. doi: 10.1029/2006GL027718 Google Scholar
  132. Koren I, Kaufman YJ, Remer LA, Martings JV (2004) Measurment of the effect of Amazon smoke on inhibition of cloud formation. Science 303:1342–1345Google Scholar
  133. Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:L14828. doi: 10.1029/2005GL023187 Google Scholar
  134. Koren I, Martins JV, Remer LA, Afargan H (2008) Smoke invigoration versus inhibition of clouds over the amazon. Science 321:946–949. doi: 10.1126/science.1159185 Google Scholar
  135. Kotaki M, Katoh C (1983) The global distribution of thunderstorm activity observed by the Ionospheric Sounding Satellite (ISS-b). J Atmos Terr Phys 45:843–847Google Scholar
  136. Kristjansson JE, Stjern CW, Stordal F, Fjraa AM, Myhre G, Jnasson K (2008) Cosmic rays, cloud condensation nuclei and clouds: a reassessment using MODIS data. Atmos Chem Phys 8:7373–7387Google Scholar
  137. Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346. doi: 10.1051/0004-6361:20066725 Google Scholar
  138. Kudela K, Rybak J, Anatalova A, Storini M (2002) Time evolution of low-frequency periodicities in cosmic ray intensity. Solar Physics 205:165–175Google Scholar
  139. Kumar PR, Kamra AK (2010) Lightning activity variation over three islands in a tropical monsoon regions. Atmos Res 98:309–316Google Scholar
  140. Labitzke K (1987) Sunspots, the QBO and the stratospheric temperature in the north polar region. Geophys Res Lett 14:535–537Google Scholar
  141. Labitzke K, Matthes K (2003) Eleven-year solar cycle variations in the atmosphere, observations, mechanisms and models. Holocene 13(3):311–317Google Scholar
  142. Labitzke K, van Loon H (1988) Associations between the 11-year solar cycle, the QBO and the atmosphere, part I: the troposphere and stratosphere in the northern hemisphere in winter. J Atmos Terr Phys 50:197–206Google Scholar
  143. Laken B, Wolfendale A, Kniveton D (2009) Cosmic ray decreases and changes in the liquid water cloud fraction over the oceans. Geophys Res Lett 36:L23803. doi: 10.1029/2009GL040961 Google Scholar
  144. Langematz U, Grenfell JL, Matthes K, Mieth P, Kunze M, Steil B, Bruhl C (2005) Chemical effects in 11-year solar cycle simulations with the Freie Universitat Berlin Climate Middle Atmosphere Model with inline chemistry (FUB-CMAM-CHEM). Geophys Res Lett 32:L13803. doi: 10.1029/2005GL022686 Google Scholar
  145. Laut P (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J Atmos Sol Terr Phys 65:801–812Google Scholar
  146. Lean J (2000) Evolution of the sun’s spectral irradiance since the maunder minimum. Geophys Res Lett 27:2425–2428Google Scholar
  147. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. doi: 10.1029/2008GL034864 Google Scholar
  148. Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708. doi: 10.1029/2009GL038932
  149. Lean JL, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys Res Lett 22(23):3195–3198Google Scholar
  150. Lean JL, Wang YM, Sheeley NR Jr (2002) The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophys Res Lett 29:2224. doi: 10.1029/2002GL015880 Google Scholar
  151. Lee DS, Kohler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Estimations of global NOx emissions and their uncertainties. Atmos Environ 31:1735–1749Google Scholar
  152. Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat AT, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291(5506):1031–1036Google Scholar
  153. Levy H II (1971) Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173:141–143Google Scholar
  154. Lockwood M, Frohlich C (2007) Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc R Soc A 463:2447–2460. doi: 10.1098/rspa.2007.1880) Google Scholar
  155. Lockwood M, Bell C, Woollings T, Harrison RG, Gray LJ, Haigh JD (2010a) Top-down solar modulation of climate: evidence for centennial-scale change. Enviro Res Lett 5:034008. ISSN 1748-9326Google Scholar
  156. Lockwood M, Harrison RG, Woollings TJ, Solanki SK (2010b) Are cold winters in Europe associated with low solar activity? Environ Res Lett 5:024001. ISSN 1748-9326Google Scholar
  157. Logan JA (1983) Nitrogen oxides in the troposphere: global and regional budgets. J Geophys Res 88:10785–10807Google Scholar
  158. Lyman JM, Good SA, Gouretsk VV, Masayoshi I, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337Google Scholar
  159. MacGorman DR, Rust WD (1998) The electrical nature of storms. Oxford Univ. Press, New YorkGoogle Scholar
  160. Mackerras D, Darveniza M, Orville RE, Williams ER, Goodman SJ (1998) Global lightning total, cloud and ground flash estimates. J Geophys Res 103:19791–19809Google Scholar
  161. Markson R, Price C (1999) Ionospheric potential as a proxy index for global temperatures. Atmos Res 51:309–314. doi: 10.1016/S0169-8095(99)00015-0 Google Scholar
  162. Marsh DR, Garcia R, Kinnison D, Boville B, Sassi F, Solomon SC, Matthes K (2007) Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J Geophys Res 112:D23306. doi: 10.1029/2006JD008306 Google Scholar
  163. Marshall J, Kushner Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21(15):1863–1898Google Scholar
  164. Marshall TC, Stolzenburg M, Maggio CR, Coleman LM, Krehbiel PR, Hamlin T, Thomas RJ, Rison W (2005) Observed electric fields associated with lightning initiation. Geophys Res Lett 32:L03813. doi: 10.1029/2004GL021802 Google Scholar
  165. Martin RV, Sioris CE, Chance K, Ryerson TB, Bertram TH, Wooldridge PJ, Cohen RC, Neuman JA, Swanson A, Flocke FM (2006) Evaluation of space-based constraints onglobal nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. J Geophys Res 111:D15308. doi: 10.1029/2005JD006680 Google Scholar
  166. Massie ST, Torres O, Smith SJ (2004) Total ozone mapping spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. J Geophys Res 109:D18211. doi: 10.1029/2004JD004620 Google Scholar
  167. Matthes K, Langematz U, Gray LL, Kodera K, Labitzke K (2004) Improved 11-year solar signal in the Freie Universitat Berlin Climate Middle Atmosphere Model (FUB-CMAM-CHEM). J Geophys Res 109. doi: 10.1029/2003/D004012
  168. McCracken KG, Dreschhoff GAM, Smart DF, Shea MA (2001) Solar cosmic ray events for the period 1561–1994. 2. The Gleissberg periodicity. J Geophys Res 106(A10):21599–21609Google Scholar
  169. Mitchell JM, Stockton C W, Meko DM (1979) Evidence of a 22-year rhythm of drought in the western United States related to the hale solar cycle since the 17th century. In: McCormac BM, Seliga TA (eds) Solar- terrestrial influences on weather and climate. D. Reidel publishing Company, DordrechtGoogle Scholar
  170. Muscheler R, Beer J, Kromer B (2003) Long-term climate variations and solar effects. In Proc., ISCS 2003 Symposium, Solar Variability as an Input for Earth’s Environment, Tatranska Lomnica, Slovakia, 23–28 June 2003, ESA SP-535, September 2003Google Scholar
  171. Naccarato KP, Pinto Jr O, Pinto IRCA (2003) Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys Res Lett 30(13). doi: 10.1029/2003GL017496
  172. Nath A, Manohar GK, Dani KK, Devera PCS (2009) A study of lightning activity over land and oceanic regions of India. J Earth System Sci 118:467–481Google Scholar
  173. Neher HV (1971) Cosmic rays at high latitudes and altitudes covering four solar maxima. J Geophys Res 76:1637–1651Google Scholar
  174. Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell CF, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, Vander Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. doi: 10.1007/s10712-008-9043-1 Google Scholar
  175. Ney EP (1959) Cosmic radiation and the weather. Nature 183:451–452Google Scholar
  176. Nicoll KA, Harrison RG (2010) Experimental determination of layer cloud edge charging from cosmic ray ionization. Geophys Res Lett 37:L13802. doi: 10.1029/2010GL043605 Google Scholar
  177. Noble CMM, Beasley WH, Postawko SE, Light TEL (2004) Coincident observations of lightning by the FORTE photodiode detector, the New Mexico Tech Lightning Mapping Array and the NLDN during STEPS. Geophys Res Lett 31:L07106. doi: 10.1029/2003GL018989 Google Scholar
  178. North GR, Wu QG (2001) Detecting climate signals using space-time EOFs. J Clim 14(8):1839–1863Google Scholar
  179. Ogurtsov MG, Nagovitsyn YA, Kocharov GE, Jungner H (2002) Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Solar Phys 211:371–394Google Scholar
  180. Olivier JGJ, Van Aardenne JA, Dentener F, Ganzeveld L, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources. In: van Amstel A (eds) Non-CO2 greenhouse gases (NCGG-4). Millpress, Rotterdam, pp 325–330Google Scholar
  181. Olson JR, Crawford JH, Chen G, Brune WH, Faloona IC, Tan D, Harder H, Martinez M (2006) A reevaluation of airborne HOx observations from NASA field campaigns. J Geophys Res 111:D10301. doi: 10.1029/2005JD006617 Google Scholar
  182. Orville RE, Huffines GR, Nielsen-Gammon J, Zhang R, Ely B, Steiger S, Phillips S, Allen S, Read W (2001) Enhancement of cloud-to-ground lightning activity over Houston, Texas. Geophys Res Lett 28:2597–2600Google Scholar
  183. Palle Bago E, Butler CJ (2001) The influence of cosmic rays on terrestrial clouds and global warming. Astron Geophys 41:18–22Google Scholar
  184. Paularena KI, Szabo A, Richardson JDL (1995) 1.3-year periodicities in the ap geomagnetic index and the solar wind. Geophys Res Lett 22:3001–3003Google Scholar
  185. Pereira Felix B, Priyadarsini G, Girish TE (2010) A possible relationship between global warming and lightning activity in India during the period 1998–2009. arxiv.org/pdf/1012.3338Google Scholar
  186. Petersen WA, Rutledge SA (1998) On the relationship between cloud-to-ground lightning and convective rainfall. J Geophys Res 103:14025–14040Google Scholar
  187. Petit J, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzmann E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostock ice core, Antarctica. Nature 399:429–436Google Scholar
  188. Pierce JR, Adams PJ (2009) Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys Res Lett 36:L09820. doi: 10.1029/2009GL037946 Google Scholar
  189. Pinto O Jr, Pinto IRCA (2008) About sensitivity of cloud-to-ground lightning activity to surface air temperature changes at different time scales in the city of Sao Paulo, Brazil, 2nd International Lightning Meteorology Conference 24–25 April 2008, Tucson, Arizona, USAGoogle Scholar
  190. Price C (2000) Evidence for a link between global lightning activity and upper troposphere water vapour. Nature 406:290–293Google Scholar
  191. Price C (2006) Global thunderstorm activity. In: Fullekrug M et al. (eds) Sprites, elves and intense lightning discharges. NATO Sciences Series, Springer, New York, pp 85–99Google Scholar
  192. Price C (2009) Will a drier climate result in more lightning? Atmos Res 91:479–484Google Scholar
  193. Price C, Asfur M (2006) Can lightning observation be used as an indicator of upper tropospheric water vapour variability? BAMS—American Meteorological Society, March issues, pp 291–298Google Scholar
  194. Price C, Federmesser B (2006) Lightning-rainfall relationships in Mediterranean winter thunderstorms. Geophys Res Lett 33:L07813. doi: 10.1029/2005GL024794 Google Scholar
  195. Price C, Rind D (1994) Possible implication of global climate change and global lightning distributions and frequencies. J Geophys Res 99:10823–10831. doi: 10.1029/94JD00019 Google Scholar
  196. Price C, Yair Y, Asfur M (2007) East African lightning as a precursor of Atlantic hurricane activity. Geophys Res Lett 34:L09805. doi: 1029/2006GL028884 Google Scholar
  197. Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation, 2nd ed. Kluwer Academic Publishers, The NetherlandGoogle Scholar
  198. Pudovkin MI, Babushkina SV (1992) Influence of solar flares and disturbances of interplanetary medium on the atmospheric circulation. J Atmos Terr Phys 54:841–846Google Scholar
  199. Randall CE, Harvey VL, Manney GL, Orsolini Y, Codrescu M, Sioris C, Brohede S, Haley C, Gordley L, Zawodny J, Russell J III (2005) Stratospheric 101 effects of energetic particle precipitation in 2003–2004. Geophys Res Lett 32:L05802. doi: 10.1029/2004GL022003 Google Scholar
  200. Randall CE, Harvey V, Singleton C, Bernath P, Boone C, Kozyra J (2006) Enhanced NOx in 2006 linked to strong upper stratospheric arctic vortex. Geophys Res Lett 33:L18811. doi: 10.1029/2006GL027160 Google Scholar
  201. Reames DV (2004) Solar energetic particle variations. Adv Space Res 34:381–390Google Scholar
  202. Reeve N, Toumi R (1999) Lightning activity as an indicator of climate change. Quart J Roy Met Soc 125:893–903Google Scholar
  203. Reid GC (1991) Solar total irradiance variations and the global sea-surface temperature record. J Geophys Res 96(D2):2835–2844Google Scholar
  204. Reid GC (2000) Solar variability and the Earth’s climate: introduction and overview. Space Sci Rev 94(1–2):1–11Google Scholar
  205. Rind D (1998) Just add water vapor. Science 281:1152–1153Google Scholar
  206. Rind D, Lonergan P, Balachandran NK, Shindell D (2002) 2×CO2 and solar variability influences on the troposphere through wave-mean flow interactions. J Meteorol Soc Jpn 80:863–876Google Scholar
  207. Rodger CJ, Clilverd MA, Thomson NR, Gamble RJ, Seppala A, Turunen E, Meredith NP, Parrot M, Sauvaud J-A, Berthelier J-J (2007) Radiation belt electron precipitation into the atmosphere: recovery from a geomagnetic storm. J Geophys Res 112:A11307. doi: 10.1029/2007JA012383 Google Scholar
  208. Rodger CJ, Seppala A, Clilverd MA (2008) Significance of transient luminous events to neutral chemistry: experimental measurements. Geophys Res Lett 35:L07803. doi: 10.1029/2008GL033221 Google Scholar
  209. Rodriguez JM, Ko MKW, Dak Sze N (1988) Antarctic chlorine chemistry—possible global implication. Geophys Res Lett 15(3):257–260Google Scholar
  210. Rohrer F, Berresheim H (2006) Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442:184–187. doi: 10.1038/nature04924 Google Scholar
  211. Rosenfeld D, Lensky IM (1998) Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull Am Meteorol Soc 79:2457–2476Google Scholar
  212. Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or dought: how do aerosol affect presipitation? Science 321:1309–1313Google Scholar
  213. Roy I, Haigh JD (2010) Solar cycle signals in sea level pressure and sea surface temperature. Atmos Chem Phys 10:3147–3153Google Scholar
  214. Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Solar Terr Phys 62:1563–1576. doi: 10.1016/S1364-6826(00)00112-7 Google Scholar
  215. Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the role of lightning and sprites. J Atmos Sol Terr Phys 69:445–456. doi: 10.1016/j.jastp.2007.09.004 Google Scholar
  216. Rycroft MJ, Harrison RG, Nicoll KA, Mareev EA (2008) An overview of Earth’s global Electric circuit and atmospheric conductivity. Space Sci Rev 137. doi: 10.1007/11214-008-9368-6
  217. Sanderson MG, Collins WJ, Johnson CE, Derwent RG (2006) Present and future acid deposition to ecosystems: the effect of climate change. Atmos Environ 40:1275–1283Google Scholar
  218. Sato M, Takahashi Y, Yoshida A, Adachi T (2008) Global distribution of intense lightning discharges and their seasonal variations. J Phys D Appl Phys 41:234011. doi: 10.1088/0022-3727/41/23/234011 Google Scholar
  219. Sátori G, Williams ER, Lemperger I (2009) Variability of global lightning activity on the ENSO time scale. Atoms Res 91:500–509Google Scholar
  220. Saunders CPR (1993) Reply to comments on “The effect of liquid water on thunderstorm charging”. J Geophys Res 98:10823–10825Google Scholar
  221. Saunders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137:335–353. doi: 10.1007/s11214-008-9345-0 Google Scholar
  222. Scafetta N, West BJ (2006) Phenomenological solar contribution to the 1900–2000 global surface warming. Geophys Res Lett 33:L05708. doi: 10.1029/2005GL025539
  223. Scafetta N, West BJ (2008) Is climate sensitive to solar variability? Physics Today March 2008:50–51Google Scholar
  224. Schlegel K, Fullekrug M (1999) Schumann resonance parameter changes during high-energy particle precipitation. J Geophys Res 104:10111–10118Google Scholar
  225. Schlegel K, Diendorfer G, Thern S, Schmidt M (2001) Thunderstorms, lightning and solar activity—Middle Europe. J Atmos Solar Terr Phys 63:1705–1713Google Scholar
  226. Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides sources. Atmos Chem Phys 7:3823–3907Google Scholar
  227. Schwabe M (1844) Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron Nachrichten 21:233–236Google Scholar
  228. Sentman DD, Stenbaek-Nielsen HC, McHarg MG, Morill JC (2008) Plasma chemistry of sprite streamers. J Geophys Res 113:D11112. doi: 10.1029/2007JD008941 Google Scholar
  229. Seppala A, Verronen PT, Kyrola E, Hassinen S, Backman L, Hauchecorne A, Bertaux JL, Fussen D (2004) Solar proton events of October-November 2003: ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat. Geophys Res Lett 31:L19107. doi: 10.1029/2004GL021042 Google Scholar
  230. Seppala A, Clilverd MA, Rodger CJ (2007a) NOx enhancements in the middle atmosphere during 2003–2004 polar winter: relative significance of solar proton events and the aurora as a source. J Geophys Res 112:D23303. doi: 10.1029/2006JD008326 Google Scholar
  231. Seppala A, Verronen PT, Clilverd MA, Randall CE, Tamminen J, Sofieva V, Backman L, Kyrola E (2007b) Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophys Res Lett 34:L12810. doi: 10.1029/2007GL029733 Google Scholar
  232. Shaviv NJ (2003) The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astron 8(1):39–77Google Scholar
  233. Shaviv NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today Geol Soc Am 7:4–10Google Scholar
  234. Shibata K, Deushi M (2008) Long-term variations and trends in the simulation of the middle atmosphere 1980–2004 by the chemistry-climate model of the Meteorological Research Institute. Ann Geophys 26:1299–1326Google Scholar
  235. Shibata K, Kodera K (2005) Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle. J Atmos Sol Terr Phys 67:125–143Google Scholar
  236. Shindell D, Rind D, Balachandran NK, Lean J, Lonergan P (1999) Solar cycle variability, ozone, and climate. Science 284(5412):305–308Google Scholar
  237. Shindell DT, Faluvegi G, Unger N, Aguilar E, Schmidt GA, Koch DM, Bauer SE, Miller RL (2006) Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos Chem Phys 6:4427–4459Google Scholar
  238. Shumilov OI, Kasatkina EA, Henriksen K, Raspopov OM (1995) Ozone “miniholes” initiated by energetic solar protons. J Atmos Terr Phys 57:665–671Google Scholar
  239. Siingh D (2008) Cosmic rays and Earth’s atmospheric processes: a review. Earth Sci India 1(III):108–134Google Scholar
  240. Siingh D, Singh RP (2010) The role of cosmic rays on the Earth’s atmospheric processes. Pramana J Phys 74:153–168Google Scholar
  241. Siingh D, Singh RP, Kamra AK, Gupta PN, Singh R, Gopalakrishnan V, Singh AK (2005) Review of electromagnetic coupling between the Earth’s atmosphere and the space environment. J Atmos Sol Terr Phys 67:637–658. doi: 10.1016/j.jastp.2004.09 Google Scholar
  242. Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh S, Pant V, Singh R, Singh AK (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110. doi: 10.1016/j.atmosres.2006.05.005 Google Scholar
  243. Siingh D, Singh AK, Patel RP, Singh RP, Venadhar B, Mukherjee M (2008) Thunderstorm, lightning, sprites and magnetospheric whistler mode radio wave. Sur Geophys 29:499–551. doi: 10.1007/s10712-008-9053-z Google Scholar
  244. Singh DK, Singh RP, Kamra AK (2004) The electrical environment of the Earth’s atmosphere: a review. Space Sci Rev 113:375–408Google Scholar
  245. Singh RP, Patel RP, Singh R, Singh RN (2005) Lightning produced nitrogen oxides in the lower atmosphere- an overview. Indian J Radio Space Phys 34:248–254Google Scholar
  246. Singh AK, Siingh D, Singh RP (2010) Space weather: physics, effects and predictability. Sur Geophys 31:581–638Google Scholar
  247. Singh AK, Siingh D, Singh RP (2011) Impact of galactic cosmic rays on Earth’s atmosphere and human health. Atmos Environ. doi: 10.1016/j.atmosenv.2011.04.027
  248. Sloan T, Wolfendale AW (2008) Testing the proposed causal link between cosmic rays and cloud cover. Environ Res Lett 3:024001. doi: 10.1088/1748-9326/3/2/024001 Google Scholar
  249. Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial Gamma-Ray Flashes Observed up to 20 MeV. Science 307:1085–1088. doi: 10.1126/science.1107466 Google Scholar
  250. Smith DM, Cusack Stephen, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi: 10.1126/science.1139540 Google Scholar
  251. Solanki SK, Krivova NA (2003) Can solar variability explain global warming since 1970? J Geophys Res 108(A5):1200. doi: 10.1029/2002JA009753
  252. Solanki SK, Schüssler M, Fligge M (2000) Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature 408:445–447Google Scholar
  253. Soriano LR, Pablo F (2002) Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos Environ 36:2809–2816Google Scholar
  254. Sorokin A, Arnold F (2009) Analysis of experiments on ion-induced nucleation and aerosol formation in the presence of UV light and ionizing radiation. Atmos Environ 43. doi: 10.1016/j.atmosenv.2009.03.023
  255. Soukharev BE, Hood LL (2006) The solar cycle variation of stratospheric ozone: multiple regression analysis of long-term satellite data sets and comparisons with models. J Geophys Res 111:D20314. doi: 10.1029/2006JD007107 Google Scholar
  256. Speidel M, Nau R, Arnold F, Schlager H, Stohl A (2007) Sulfur dioxide measurements in the lower, middle and upper troposphere: deployment of an aircraft-based chemical ionization mass spectrometer with permanent in-flight calibration. Atmos Environ 41:2427–2437Google Scholar
  257. Stallins JA, Rose LS (2008) Urban lightning: current research, methods, and the geographical perspective. Geogr Compass 620–639. doi: 10.1111/j.1749-8198.2008.00110.x
  258. Steiger SM, Orville RE, Huffines G (2002) Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J Geophys Res 107. doi: 10.1029/2001JD001142
  259. Stephenson JAE, Scourfield MWJ (1991) Importance of energetic solar protons in ozone depletion. Nature 352:137–139Google Scholar
  260. Stevenson DS, Doherty RM, Sanderson MG, Collins WJ, Johnson CE, Derwent RG (2005) Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence. J Geophys Res 109:D17307. doi: 10.1029/2004JD004759 Google Scholar
  261. Stolzenburg M, Marshall TC, Rust WD, Bruning E, MacGorman DR, Hamlin T (2007) Electric field values observed near lightning flash initiations. Geophys Res Lett 34:L04804. doi: 10.1029/2006GL028777 Google Scholar
  262. Stott PA, Jones GS, Mitchell JFB (2003) Do models underestimate the solar contribution to recent climate change? J Clim 16(24):4079–4093Google Scholar
  263. Stringfellow MF (1974) Lightning incidence in Britain and the solar cycle. Nature 249:332–333Google Scholar
  264. Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107(D14):4211. doi: 10.1029/2001JD000560 Google Scholar
  265. Svensmark H (1998) Influence of cosmic rays on Earth’s climate. Physical Rev Lett 81(22):5027–5030Google Scholar
  266. Svensmark H (2007) Cosmoclimatology: a new theory emerges. A and G 47: February 2007: 1.18–1.24Google Scholar
  267. Svensmark H, Friis-Christensen E (1997) Variations of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J Atmos Terr Phys 59:1225–1232Google Scholar
  268. Svensmark H, Pedesen JOP, Marsh ND, Enghoff MB, Uggerhoj UI (2007) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc R Soc 463:385–396Google Scholar
  269. Svensmark H, Bondo T, Svensmark J (2009) Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys Res Lett 36:L15101Google Scholar
  270. Thejll P, Lassen K (2000) Solar forcing of the Northern hemisphere land air temperature: new data. J Atmos Solar Terr Phys 62(13):1207–1213Google Scholar
  271. Thomas BC, Jackman CH, Melott AL (2007) Modeling atmospheric effects of the September 1859 solar flare. Geophys Res Lett 34(6):L06810Google Scholar
  272. Tinsley BA (2000) Influence of the solar wind on the global electric circuit and inferred effects on cloud microphysics, temperature and dynamics in the troposphere. Space Sci Revs 94:231–258Google Scholar
  273. Tinsley BA (2004) Scavenging of condensation nuclei in clouds: dependence of sign of electroscavenging effect on droplet and CCN sizes. Extended Abstracts, ICCP Bologna, July 2004Google Scholar
  274. Tinsley BA (2008) The global atmospheric electric circuit and its effects on cloud microphysics. Rep Prog Phys 71(066801):31. doi: 10.1088/0034-4885/71/6/066801
  275. Tinsley BA, Rohrbaugh RP, Hei M (2001) Electroscavenging in clouds with broad droplets size distributions and weak electrification. Atmos Res 115:59–60Google Scholar
  276. Tinsley BA, Burns GB, Zhou L (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv Space Res 40:1126–1139. doi: 10.1016/j.asr.2007.01.071 Google Scholar
  277. Todd MC, Kniveton DR (2001) Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J Geophys Res 106(D23):32031–32041Google Scholar
  278. Todd MC, Kniveton DR (2004) Short-term variability in satellite-derived cloud cover and galactic cosmic rays: an update. J Atmos Sol Terr Phys 66:1205–1211Google Scholar
  279. Toumi R, Qie X (2004) Seasonal variation of lightning on the Tibetan Plateau: a spring anomaly? Geophs Res Lett 31:L04115. doi: 10.1029/2003GL018930 Google Scholar
  280. Toumi R, Haigh JD, Law KS (1996) A tropospheric ozone lightning climate feedback. Geophys Res Lett 23:1037–1040. doi: 10.1029/96GL00944 Google Scholar
  281. Trenberth K, Fasullo J (2010) Tracking Earth’s Energy. Science 328:316–317Google Scholar
  282. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change, in climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller H (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  283. Tripathi SN, Harrison RG (2002) Enhancement of contact nucleation by scavenging of charged aerosol. Atmos Res 62:57–70Google Scholar
  284. Udelhofen PM, Hartmann DL (1995) Influence of tropical cloud systems on the relative humidity in the upper troposphere. J Geophys Res 100:7423–7440Google Scholar
  285. Unger N, Shindell DT, Koch DM, Amann M, Cofala J, Streets DG (2006) Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures. J Geophys Res 111:D12313. doi: 10.1029/2005JD006518 Google Scholar
  286. Ushino T (2003) Lightning observation by the LIS aboard the TRMM satellite, Japan earth and planetary science joint meeting (Makuhari, Chiba) Abstract E024-012Google Scholar
  287. van den Heever SC, Cotton WR, DeMott PJ, Prenni AJ (2006) Impact of nucleating aerosol on Florida convection, part1: mesoscale simulations. J Atmos Sci 63:1752–1775Google Scholar
  288. van Noije TPC, Eskes HJ, Dentener FJ, Stevenson DS, Ellingsen K, Schultz MG, Wild O, Amann M, Atherton CS, Bergmann DJ, Bey I, Boersma KF, Butler T, Cofala J, Drevet J, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque J-F, Lawrence MG, Martin RV, Montanaro V, Muller J-F, Pitari G, Prather MJ, Pyle JA, Richter A, Rodriguez JM, Savage NH, Strahan SE, Sudo K, Szopa S, van Roozendael M (2006) Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000. Atmos Chem Phys 6:2943–2979Google Scholar
  289. Viggiano AA, Arnold F (1995) Ion chemistry and composition of the atmosphere. In: Volland H (ed) Atmos electro. CRC Press, Boca Raton, USA, pp 1–22Google Scholar
  290. Von Biel HA (1992) Ionisation in the Antarctic stratosphere. J Atmos Terr Phys 54:235–242Google Scholar
  291. Wagner WJ (1984) Coronal mass ejections. Annu Rev Astron Astrophys 22:267–289Google Scholar
  292. Westcott NE (1995) Summer time cloud-to-ground lightning activity around major Midwestern urban areas. J Appl Meteorol 34:1633–1642Google Scholar
  293. White WB, Lean J, Cayan DR, Dettinger MD (1997) Response of global upper ocean temperature to changing solar irradiance. J Geophys Res 102(C2):3255–3266Google Scholar
  294. Williams ER (1985) Large-scale charge separation in thunderclouds. J Geophys Res 90:6013–6025Google Scholar
  295. Williams ER (1992) The Schumann Resonance: a global thermometer. Science 256:1184–1187. doi: 10.1126/science.256.5060.1184 Google Scholar
  296. Williams ER (2005) Lightning and climate: a review. Atmos Res 76:272–287. doi: 10.1016/j.atmosres.2004.11.014 Google Scholar
  297. Williams ER (2009) The global electrical circuit: a review. Atmos Res 91:140–152. doi: 10.1016/j.atmosres.2008.05.018 Google Scholar
  298. Williams ER, Renno NO (1993) An analysis of the conditional instability for the tropical atmosphere. Mon Weather Rev 121:21–36Google Scholar
  299. Williams ER, Satori G (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J Atmos Sol Terr Phys 66:1213–1231Google Scholar
  300. Williams ER, Stanfill S (2002) The physical origin of the land-ocean contrast in lightning activity. C R Phys 3:1277–1292. doi: 10.1016/S1631-0705(02)01407-X Google Scholar
  301. Williams ER, Weber ME, Orville RE (1989) The relationship between lightning type and convective state of thunderclouds. J Geophys Res 94:13213–13220Google Scholar
  302. Williams ER, Rosenfeld D, Madden N, Labrada C, Gerlach J, Atkinson L (1999) The role of boundary layer aerosol in the vertical development of precipitation and electrification: another look at the contrast between lightning over land and over ocean, Reprints, in Eleventh International Conference on Atmospheric Electricity. Amer Meteorol Soc, Boston, MA, pp 754–757Google Scholar
  303. Williams ER, Rothkin K, Stevenson D, Boccippio D (2000) Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J Appl Meteorol 39:2223–2248 (TRMM Special Issue)Google Scholar
  304. Williams VJ, Austin J, Haigh JD (2001) Model simulations of the impact of the 27-day solar rotation period on stratospheric ozone and temperature. Adv Space Res 27(12):1933–1942Google Scholar
  305. Williams ER, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson L, Dunnemann N, Frostrom G, Antonio M, Biazon B, Camargo R, Franca H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano Machado W, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E (2002) Contrasting convective regions over the Amazon: implications for cloud electrification. J Geophys Res 107(20):8082. doi: 101029/2001JD000380 Google Scholar
  306. Williams ER, Chan T, Boccippio D (2004) Islands as miniature continents: another look at the land-ocean lightning contrast. J Geophys Res 109:D16206. doi: 10,1029/2003JD003833 Google Scholar
  307. Williams ER, Mushtak VC, Rosenfeld D, Goodman SJ, Boccippio DJ (2005) Thermodynamics conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos Res 76:288–306. doi: 10.1016/j.atmosres.2004.11.009 Google Scholar
  308. Yair Y (2008) Charge generation and separation processes. Space Sci Rev 137:119–131. doi: 10.1007/s11214-008-9348-x Google Scholar
  309. Yienger JJ, Levy H II (1995) Empirical model of global soil-biogenic NOx emissions. J Geophys Res 100:11447–11464Google Scholar
  310. Yu F, Turco RP (2001) From molecular clusters to nanoparticles: the role of ambient ionization in tropospheric aerosol formation. J Geophys Res 106:4797–4814Google Scholar
  311. Yu F, Wang Z, Luo G, Turco R (2008) Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos Chem Phys 8:2537–2554Google Scholar
  312. Zhang R, Lei W, Tie X, Hess P (2004) Industrial emissions cause extreme urban ozone diurnal variability. Proc Natl Acad Sci USA 101(17):6346–6350Google Scholar
  313. Zhou L, Tinsley BA (2007) The production of space charge at the boundaries of layer clouds. J Geophys Res 112:D11203. doi: 10.1029/2006JD007998

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Devendraa Siingh
    • 1
  • R. P. Singh
    • 2
  • Ashok K. Singh
    • 3
  • M. N. Kulkarni
    • 1
  • A. S. Gautam
    • 1
  • Abhay K. Singh
    • 2
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  3. 3.Physics DepartmentLucknow UniversityLucknowIndia

Personalised recommendations