Skip to main content

Advertisement

Log in

Deep Electromagnetic Studies from Land, Sea, and Space: Progress Status in the Past 10 Years

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This review paper summarizes advances in deep electromagnetic studies of the Earth in the past decade. The paper reports progress in data interpretation, with special emphasis on three-dimensional and quasi one-dimensional developments, and results. The results obtained from data of different origin—geomagnetic observatories, long-period magnetotelluric experiments, submarines cables, and from low-Earth orbiting geomagnetic satellite missions—are described. Both frequency-domain and time-domain approaches are addressed. Perspectives for the future are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexandrescu Mandea M, Gilbert D, Le Mouel J-L, Hulot G, Saracco G (1999) An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks. J Geophys Res 104(B8):17735–17745

    Article  Google Scholar 

  • Baba K, Utada H, Goto T, Kasaya T, Shimizu H, Tada N (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Int. doi:10.1016/j.pepi.2010.09.010

    Google Scholar 

  • Balasis G, Egbert GD (2006) Empirical orthogonal function analysis of magnetic observatory data: Further evidence for non-axisymmetric magnetospheric sources for satellite induction studies. Geophys Res Lett 33:L11311. doi:10.1029/2006GL025721

  • Balasis G, Egbert GD, Maus S (2004) Local time effects in satellite estimates of electromagnetic induction transfer functions. Geophys Res Lett 31:L16610. doi:10.1029/2004GL020147

    Article  Google Scholar 

  • Banks R (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J R Astr Soc 17:457–487

    Google Scholar 

  • Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosyst 3:1003. doi:10.1029/2001GC000168

    Article  Google Scholar 

  • Beiner J (1973) Analysis in phases of diffusion PI-C-12 beneath 300 MEV. Nucl Phys B53:349–365

    Article  Google Scholar 

  • Bendat J, Piersol A (1968) Random data: analysis and measurement procedure. Wiley, New York

    Google Scholar 

  • Bercovici D, Karato SI (2003) Whole-mantle convection and the transition-zone water filter. Nature 425:39–44

    Article  Google Scholar 

  • Byrd R, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 5:1190–1208

    Article  Google Scholar 

  • Chamalaun FH, Barton CE (1993) Electromagnetic induction in the Australian crust: results from the Australia-wide array of geomagnetic stations. Explor Geophys 24:179–186

    Article  Google Scholar 

  • Chapman S, Price A (1930) The electric and magnetic state of the interior of the Earth as inferred from terrestrial magnetic variations. Phil Trans R Soc Lond A 229:427–460

    Article  Google Scholar 

  • Chulliat A, Lalanne X, Gaya-Pique LR, Truong F, Savary J (2009) The new Eastre Island magnetic observatory. In: Love JJ (ed) Proceedings of the XIIIth IAGA workshop on geomagnetic observatory instruments, data acquisition and processing. US Geological Survey Open-File Report 20091226, pp 47–53

  • Constable S, Constable C (2004) Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity. Geochem Geophys Geosyst 5:Q01006. doi:10.1029/2003GC000634

  • Constable S, Parker RL, Constable C (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300

    Article  Google Scholar 

  • Egbert G, Booker JR, Schultz A (1992) Very long period magnetotellurics at Tucson observatory: estimation of impedances. J Geophys Res 97:15113–15128

    Article  Google Scholar 

  • Erofeeva S, Egbert G (2002) Efficient inverse modeling of barotropic ocean tides. J Ocean Atmos Technol 19:183–204

    Article  Google Scholar 

  • Faccena C, Jolivet L, Piromallo C, Morelli A (2003) Subduction and the depth of convection in the Mediterranean mantle. J Geophys Res 108(B2):2099

    Article  Google Scholar 

  • Fainberg E, Kuvshinov A, Mishina L, Singer B (1990) The new approach to global deep soundings. Pure Appl Geophys 134:527–531

    Article  Google Scholar 

  • Fujii I, Schultz A (2002) The 3D electromagnetic response of the Earth to ring current and auroral oval excitation. Geophys J Int 151:689–709

    Article  Google Scholar 

  • Fukao Y, Widiyantoro S, Obayashi M (2001) Stagnant slabs in the upper and lower mantle transition region. Rev Geophys 39:291–323

    Article  Google Scholar 

  • Fukao Y, To A, Obayashi M (2003) Whole mantle P-wave tomography using P and PP-P data. J Geophys Res 108(B1):2021. doi:10.1029/2001JB000989

  • Fukao Y, Koyama T, Obayashi M, Utada H (2004) Trans-Pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography. Earth Planet Sci Lett 217:425–434

    Article  Google Scholar 

  • Haber E, Ascher UM, Oldenburg DW (2004) Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach. Geophysics 69:1216–1228

    Article  Google Scholar 

  • Hae R, Ohtani E, Kubo T, Koyama T, Utada H (2006) Hydrogen diffusivity in wadsleyite and water distribution in the mantle transition zone. Earth Planet Sci Lett 243:141–148

    Article  Google Scholar 

  • Huang XG, Xu YS, Karato SI (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749

    Article  Google Scholar 

  • Ichiki M, Uyeshima M, Utada U, Guoze Z, Ji T, Mingzhi M (2001) Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys Res Lett 28:3773–3776

    Article  Google Scholar 

  • Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 postperovskite phase in the Earths lowermost mantle. Nature 430:442–445

    Article  Google Scholar 

  • Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition zone. Geophys Res Lett 22:117–120

    Article  Google Scholar 

  • Ito E, Katsura T (1989) A temperature profile of the mantle transition zone. Geophys Res Lett 16:425–428

    Article  Google Scholar 

  • Jiracek GR (1990) Near-surface and topographic distortions in electromagnetic induction. Surv Geophys 11:163–203

    Article  Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Karato S (1993) Importance of anelasticity in the interpretation of seismic tomography. Geophys Res Lett 20:1623–1626

    Article  Google Scholar 

  • Karato S (2006) Remote sensing of hydrogen in Earth’s mantle. Rev Miner Geochem 62:343

    Article  Google Scholar 

  • Karato S, Dai LD (2009) Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Phys Earth Planet Interiors 174:19–21

    Article  Google Scholar 

  • Kelbert A, Egbert G, Schultz A (2008) Non-linear conjugate gradient inversion for global EM induction: resolution studies. Geophys J Int 173:365–381

    Article  Google Scholar 

  • Kelbert A, Schultz A, Egbert G (2009a) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460:1003–1007

    Article  Google Scholar 

  • Kelbert A, Egbert G, Schultz A (2009b) Spatial variability of mantle transition zone water content: evidence from global electromagnetic induction data. Abstracts of AGU Fall Meeting, San-Francisco

    Google Scholar 

  • Kennett B, Engdahl E (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465

    Article  Google Scholar 

  • Khan A, Connolly JAD, Olsen N (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J Geophys Res 111:B10102. doi:10.1029/2006JB004270

    Article  Google Scholar 

  • Khan A, Boschi L, Connolly JAD (2009) On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. J Geophys Res 114:B09305. doi:10.1029/2009JB006399

    Article  Google Scholar 

  • Khan A, Kuvshinov A, Semenov A (2010) On the heterogeneous electrical conductivity structure of the Earth’s mantle with implications for transition zone water content. J Geophys Res 116:B01103. doi:10.1029/2010JB007458

    Article  Google Scholar 

  • Korte M, Mandea M, Linthe HJ, Hemshorn A, Kotze P, Ricaldi E (2009) New geomagnetic field observations in the South Atlantic Anomaly region. Ann Geophys 52:65–82

    Google Scholar 

  • Koyama T (2001) A study on the electrical conductivity of the mantle by voltage measurements of submarine cables. PhD thesis, University of Tokyo

  • Koyama T, Shimizu H, Utada H, Ichiki M, Ohtani E, Hae R (2006) Water content in the mantle transition zone beneath the North Pacific derived from the electrical conductivity anomaly. AGU Geophys Monogr Ser 168:171–179

    Article  Google Scholar 

  • Kuvshinov A (2008) 3-D global induction in the oceans and solid Earth: recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric, and oceanic origin. Surv Geophys 29:139–186. doi:10.1007/s10712-008-9045-z

    Article  Google Scholar 

  • Kuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys Res Lett 33:L18301. doi:10.1029/2006GL027083

    Article  Google Scholar 

  • Kuvshinov A, Utada H (2010) Anomaly of the geomagnetic Sq variation in Japan: effect from 3-D subterranean structure or the ocean effect? Geophys J Int. doi:10.1111/j.1365-246X.2010.04809.x

    Google Scholar 

  • Kuvshinov A, Avdeev D, Pankratov O (1999) Global induction by Sq and Dst sources in the presence of oceans: bimodal solutions for non-uniform spherical surface shells above radially symmetric Earth models in comparison to observations. Geophys J Int 137:630–650

    Article  Google Scholar 

  • Kuvshinov A, Olsen N, Avdeev D, Pankratov O (2002) EM induction in the oceans and the anomalous behavior of coastal C-responses for periods up to 20 days. Geophys Res Lett 29(12):1595. doi:10.1029/2001GL014409

    Google Scholar 

  • Kuvshinov A, Utada H, Avdeev D, Koyama T (2005) 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited. Geophys J Int 160:505–526

    Article  Google Scholar 

  • Kuvshinov A, Sabaka T, Olsen N (2006a) 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle. Earth Planets Space 58:417–427

    Google Scholar 

  • Kuvshinov A, Junge A, Utada H (2006b) 3-D modelling the electric field due to ocean tidal flow and comparison with observations. Geophys Res Lett. doi:10.1029/2005GL025043

    Google Scholar 

  • Kuvshinov A, Manoj C, Olsen N, Sabaka T (2007) On induction effects of geomagnetic daily variations from equatorial electrojet and solar quiet sources at low and middle latitudes. J Geophys Res 112(B1):0102. doi:10.1029/2007JB004955

    Google Scholar 

  • Kuvshinov A, Semenov A, Pankratov O, Jackson A, Olsen N (2008) 3-D imaging of mantle conductivity based on inversion of satellite C-responses: Proof of concept. Expanded abstract of 19 Workshop on Electromagnetic Induction in the Earth, Beijing, China

  • Kuvshinov A, Semenov A, Pankratov O, Olsen N (2009) 3-D mapping of mantle conductivity from space. An approach and its verification. In: Proceedings of 2nd international Swarm science meeting, Potsdam

  • Kuvshinov A, Velimsky J, Tarits P, Semenov A, Pankratov O, Toffner-Clausen L, Martinec Z, Olsen N, Sabaka T, Jackson A (2010) L2 products and performances for mantle studies with Swarm. ESA Final Report, 2010, 173 pp, http://esamultimedia.esa.int/docs/EarthObservation/Induction_Study_150110.pdf

  • Lizarralde D, Chave A, Hirth G, Schultz A (1995) Long period magnetotelluric study using Hawaii-to-California submarine cable data: implications for mantle conductivity. J Geophys Res 100(B9):17873–17884

    Article  Google Scholar 

  • Mackie RL, Madden T (1993) Three-dimensional magnetotelluric inversion using conjugate gradients. Geophys J Int 115:215–229

    Article  Google Scholar 

  • Manthilake M, Matsuzaki T, Yoshino T, Yamashita S, Ito E, Katsura T (2009) Electrical conductivity of wadsleyite as a function of temperature and water content. Phys Earth Planet Int. doi:10.1016/j.pepi.2008.06.001

    Google Scholar 

  • Martinec Z (2010) The forward and adjoint methods of global electromagnetic induction for CHAMP magnetic data. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, pp 565–624. doi:10.1007/978-3-642-01546-5_19

  • Martinec Z, McCreadie H (2004) Electromagnetic induction modeling based on satellite magnetic vector data. Geophys J Int 157:1045–1060

    Article  Google Scholar 

  • Martinec Z, Velimsky J (2009) The adjoint sensitivity method of EM induction for CHAMP magnetic data. Geophys J Int 179:1372–1396

    Article  Google Scholar 

  • Matzka J, Olsen N, Fox Maule C, Pedersen L, Berarducci AM, Macmillan S (2009) Geomagnetic observations on Tristan da Cuhna, South Atlantic Ocean. Ann Geophys 52:97–105

    Google Scholar 

  • Medin AE, Parker RL, Constable S (2007) Making sound inferences from geomagnetic sounding. Phys Earth Planet Int 160:51–59

    Article  Google Scholar 

  • Megnin C, Romanowicz B (2000) The three-dimensional shear velocity structure of the mantle from the inversion of body, urface and higher mode waveforms. Geophys J Int 143:709–728

    Article  Google Scholar 

  • Mochizuki E, YokoyamaY ShimizuI, Hamano Y (1997) Spherical harmonic analysis in terms of unevenly distributed observation points and its applications to geomagnetic data. J Geomag Geoelecr 49:1013–1033

    Article  Google Scholar 

  • Mosegaard K (1998) Resolution analysis of general inverse problems through inverse Monte Carlo sampling. Inverse Probl 14:405–416

    Article  Google Scholar 

  • Neal SL, Mackie RL, Larsen JC, Schultz A (2000) Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean. J Geophys Res 105(B4):8229–8242

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization. Springer, Berlin

    Google Scholar 

  • Obayashi M, Sugioka H, Yoshimitsu H, Fukao Y (2006) High temperature anomalies oceanward of subducting slabs at the 410 km discontinuity. Earth Planet Sci Lett 243:149–158

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth’s D’’ layer. Nature 430:445–448

    Article  Google Scholar 

  • Ohta K, Onoda S, Hirose K, Sinmyo R, Shimizu K, Sata N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in Earth’s D” layer. Science 320:89–91

    Article  Google Scholar 

  • Olsen N (1998) The electrical conductivity of the mantle beneath Europe derived from C-Responses from 3 h to 720 h. Geophys J Int 133:298–308

    Article  Google Scholar 

  • Olsen N (1999a) Long-period (30 days–1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys J Int 138:179–187

    Article  Google Scholar 

  • Olsen N (1999b) Induction studies with satellite data. Surv Geophys 20:309–340

    Article  Google Scholar 

  • Olsen N, Kuvshinov A (2004) Modelling the ocean effect of geomagnetic storms. Earth Planets Space 56:525–530

    Google Scholar 

  • Olsen N, Vennerstrøm S, Friis-Christensen E (2002) Monitoring magnetospheric contributions using ground-based and satellite magnetic data. In: Reigber C, Luehr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, New York, pp 245–250

    Google Scholar 

  • Olsen N, Haagmans R, Sabaka T, Kuvshinov A, Maus S, Purucker M, Rother M, Lesur V, Mandea M (2006) The Swarm end-to-end mission simulator study: separation of the various contributions to Earth’s magnetic field using synthetic data. Earth Planets Space 58:359–370

    Google Scholar 

  • Olsen N, Sabaka T, Gaya-Pique (2007) Study of an improved comprehensive magnetic field inversion analysis for Swarm. DNSC Scientific Report 1/2007 Danish National Space Center Copenhagen

  • Olsen N, Mandea M, Sabaka TJ, Toeffner-Clausen L (2009) CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data. Geophys J Int 23:5–7. doi:10.1111/j.1365-246X.2009.04386.x

    Google Scholar 

  • Olsen N, Hulot G, Sabaka TJ (2010) Sources of the geomagnetic field and the modern data that enable their investigation. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, pp 106–124. doi:10.1007/978-3-642-01546-5_5

  • Pankratov O, Kuvshinov A (2010) General formalism for the efficient calculation of derivatives of EM frequency domain responses and derivatives of the misfit. Geophys J Int 181:229–249

    Article  Google Scholar 

  • Pankratov O, Avdeev D, Kuvshinov A (1995) Electromagnetic field scattering in a homogeneous Earth: a solution to the forward problem. Phys Solid Earth 31:201–209

    Google Scholar 

  • Parker RL, Whaler K (1981) Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. J Geophys Res 86:9574–9584

    Article  Google Scholar 

  • Prieto GA, Parker RL, Thomson DJ, Vernon FL, Graham RL (2007) Reducing the bias of multitaper spectrum estimates. Geophys J Int 171:1269–1281

    Article  Google Scholar 

  • Riedel K, Sidorenko A (1995) Minimum bias multiple taper spectral estimation. IEEE Trans Signal Process 43:188–195

    Article  Google Scholar 

  • Roberts RG (1984) The long-period electromagnetic response of the earth. Geophys J R Astr Soc 78:547–572

    Google Scholar 

  • Rodi W, Mackie RL (2000) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187

    Article  Google Scholar 

  • Romanowicz B (2003) Global mantle tomography: progress status in the past 10 years. Ann Rev Earth Planet 31:303–328

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic feld with Oersted and CHAMP data. Geophys J Int 159:521–547

    Article  Google Scholar 

  • Santos FAM, Soares A, Nolasco R, Rodrigues H, Luzio R, Palshin N, ISO-3D Team (2003) Lithosphere conductivity structure using the CAM-1 (Lisbon-Madeira) submarine cable. Geophys J Int 155:591–600

    Article  Google Scholar 

  • Schmucker U (1970) Anomalies of geomagnetic variations in the south-western United States. Bull Scripps Inst Ocean, Unif Calif 13:1–165

    Google Scholar 

  • Schmucker U (1979) Erdmagnetische Variationen und die elektrische Leitfahigkeit in tieferen Schichten der Erde. Sitzungsbericht und Mitteilungen Braunschweigische Wiss Gesellschaft, Sonderheft 4:45–102

    Google Scholar 

  • Schmucker U (1999a) A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction - I. Methods. Geophys J Int 136:439–454

    Article  Google Scholar 

  • Schmucker U (1999b) A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction—II. Results. Geophys J Int 136:455–476

    Article  Google Scholar 

  • Schmucker U (2003) Horizontal spatial gradient sounding and geomagnetic depth sounding in the period range of daily variations, In: Protokoll über das Kolloquium Elektromagnetische Tiefenforschung, Königstein, pp 228–237

  • Schultz A (2010) EMScope: a continental scale magnetotelluric observatory and data discovery resource. Data Sci J 8:IGY6–IGY20

    Article  Google Scholar 

  • Schultz A, Larsen JC (1987) On the electrical conductivity of the mid-mantle: I. Calculation of equivalent scalar MT response functions. Geophys J R Astr Soc 88:733–761

    Google Scholar 

  • Schultz A, Pritchard G (1999) A three-dimensional inversion for large scale structure in a spherical domain. In: Spies B, Oristaglio M (eds) Three dimensional electromagnetics. Geophysical Developments Series, vol 7. Society of Exploration Geophysicists, pp 451–476

  • Schuster A (1889) The diurnal variation of terrestrial magnetism. Phil Trans R Soc Lond A 180:467–518

    Article  Google Scholar 

  • Semenov V, Jozwiak W (2006) Lateral variations of the mid-mantle conductance beneath Europe. Tectonophys 416:279–288

    Article  Google Scholar 

  • Semenov A, Kuvshinov A (2010) Spatial distribution of the mantle conductivity as seen from the 3-D inversion of ground-based C-responses. Geophysical Research Abstracts 12 EGU2010-12565

    Google Scholar 

  • Semenov V, Shuman V (2010) Impedances for induction soundings of the Earth’ mantle. Acta Geophys 58:527–542

    Article  Google Scholar 

  • Semenov V, Pek J, Adam A, Jozwiak W, Ladanyvskyy B, Logvinov I, Pushkarev P, Vozar J (2008) Electrical structure of the upper mantle beneath Central Europe: results of the CEMES project. Acta Geophys 56:957–981

    Article  Google Scholar 

  • Shimizu H, Utada H (1999) Ocean hemisphere geomagnetic network: its instrumental design and perspective for long-term geomagnetic observations in the Pacific. Earth Planets Space 51:917–932

    Google Scholar 

  • Shimizu H, Koyama T, Baba K, Utada H (2009) Three-dimensional geomagnetic response functions for global and semi-global scale induction problems. Geophys J Int 178:123–144

    Article  Google Scholar 

  • Shimizu H, Koyama T, Baba K, Utada H (2010a) Revised 1-D mantle electrical conductivity structure beneath the north Pacific. Geophys J Int 180:1030–1048

    Article  Google Scholar 

  • Shimizu H, Utada H, Baba K, Koyama T, Obayashi M, Fukao Y (2010b) Three-dimensional imaging of electrical conductivity in the mantle transition zone beneath the North Pacific Ocean by a semi-global induction study. Phys Earth Planet Int. doi:10.1016/j.pepi

    Google Scholar 

  • Singer B (1995) Method for solution of Maxwell’s equations in nonuniform media. Geophys J Int 120:590–598

    Article  Google Scholar 

  • Singer B, Kuvshinov A, Mishina L, Fainberg E (1993) Global geomagnetic sounding: new methodology and results. Phys Solid Earth 29:35–43

    Google Scholar 

  • Tarits P, Mandea M (2010) The heterogeneous electrical conductivity structure of the lower mantle. Phys Earth Planet Int. doi:10.1016/j.pepi.2010.08.002

    Google Scholar 

  • Tarits P, Wahr J, Lognonne P (1992) Electrical conductivity heterogeneities in the mantle: correlation with mantle velocity structure. Abstracts of AGU Fall Meeting, San-Francisco

    Google Scholar 

  • Tarits P, Hautot S, Perrier F (2004) Water in the mantle: results from electrical conductivity beneath French Alps. Geophys Res Lett 31:L06612. doi:10.1029/2003GL019277

  • Toffelmier DA, Tyburczy JA (2007) Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447:991–994

    Article  Google Scholar 

  • Toh H, Hamano Y, Ichiki M, Utada H (2004) Geomagnetic observatory operates at the seafloor in the Northwest Pacific Ocean. EOS 85:467, 473

    Google Scholar 

  • Toh H, Hamano Y, Ichiki M (2006) Long-term seafloor geomagnetic station in the northwest Pacific: A possible candidate for a seafloor geomagnetic observatory. Earth Planets Space 58:697–705

    Google Scholar 

  • Toh H, Hamano Y, Goto T, Utada H (2010) Long-term seafloor electromagnetic observation in the northwest Pacific may detect the vector geomagnetic secular variation. Data Sci J 9:IGY100–IGY109

    Article  Google Scholar 

  • Trampert J, Deschamps F, Resovsky J, Yuen D (2004) Chemical heterogeneities throughout the lower mantle. Science 306:853–855

    Article  Google Scholar 

  • Utada H, Koyama T, Shimizu H, Chave A (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Res Lett 30(4):1194–1198. doi:10.1029/2002GL016092

    Article  Google Scholar 

  • Utada H, Koyama T, Obayashi M, Fukao Y (2009) A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry. Earth Planet Sci Lett 281:249–257

    Article  Google Scholar 

  • Uyeshima M, Schultz A (2000) Geoelectromagnetic induction in a heterogeneous sphere: a new 3-D forward solver using a staggered-grid integral formulation. Geophys J Int 140:636–650

    Article  Google Scholar 

  • Velimsky J (2010) Electrical conductivity in the lower mantle: Constraints from CHAMP satellite data by time-domain EM induction modeling, Phys Earth Planet Int 180(3–4):111–117. doi:10.1016/j.pepi.2010.02.007

  • Velimsky J, Martinec Z (2005) Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. Geophys J Int 161:81–101

    Article  Google Scholar 

  • Velımsky J, Martinec Z, Everett ME (2006) Electrical conductivity in the Earth’s mantle inferred from CHAMP satellite measurements—I. Data processing and 1-D inversion. Geophys J Int 166:529–542

    Article  Google Scholar 

  • Vozar J, Semenov V (2010) Compatibility of induction methods for mantle sounding. J Geophys Res 115:B03101. doi:10.1029/2009JB006390

    Article  Google Scholar 

  • Wang D, Mookherjee M, Xu YS, Karato SI (2006) The effect of hydrogen on the electrical conductivity in olivine. Nature 443:977–980

    Article  Google Scholar 

  • Weidelt P (1972) The inverse problem of geomagnetic induction. Z Geophys 38:257–289

    Google Scholar 

  • Weiss CJ (2010) Triangulated finite difference methods for global scale electromagnetic induction simulations of whole mantle electrical heterogeneities. Geochem Geophys Geosyst (submitted)

  • Xu Y, Poe BT, Shankland TJ, Rubie DC (1998) Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper mantle conditions. Science 280:1415–1418

    Article  Google Scholar 

  • Yoshino T, Katsura T (2009) Reply to Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Discussion. Phys Earth Planet Interiors 174:22–23

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashina S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976

    Article  Google Scholar 

  • Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008) Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451:326–329

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the organizing committee of the 20th international workshop on Electromagnetic Induction in the Earth in Giza, Egypt for the invitation to present this review. I also thank Amir Khan for overall comments as well as help with improving the English presentation of this review. I am very grateful to all those who contributed material for this paper, in alphabetical order (K. Baba, A. Kelbert, A. Khan, Z. Martinec, J. Matzka, K.Ohta, N. Olsen, A. Schultz, A. Semenov, V. Semenov, H. Shimizu, P. Tarits, H. Utada, J. Velimsky) and I apologize to those whose material I could not include. This work has been supported in part by European Space Agency through ESTEC contracts No. 20944/07/NL/JA and No. 22656/09/NL/FF, and by the Russian Foundation for Basic Research under grant No. 09-05-01071-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuvshinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuvshinov, A.V. Deep Electromagnetic Studies from Land, Sea, and Space: Progress Status in the Past 10 Years. Surv Geophys 33, 169–209 (2012). https://doi.org/10.1007/s10712-011-9118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9118-2

Keywords

Navigation