Surveys in Geophysics

, Volume 33, Issue 1, pp 169–209 | Cite as

Deep Electromagnetic Studies from Land, Sea, and Space: Progress Status in the Past 10 Years



This review paper summarizes advances in deep electromagnetic studies of the Earth in the past decade. The paper reports progress in data interpretation, with special emphasis on three-dimensional and quasi one-dimensional developments, and results. The results obtained from data of different origin—geomagnetic observatories, long-period magnetotelluric experiments, submarines cables, and from low-Earth orbiting geomagnetic satellite missions—are described. Both frequency-domain and time-domain approaches are addressed. Perspectives for the future are also discussed.


Observatory, MT, cable, and satellite induction data Electrical conductivity in the mantle Water in upper mantle and transition zone Sources of magnetospheric, ionospheric and oceanic origin Global EM inversion Multi-dimensional conductivity models Frequency- and time-domain approaches 



I would like to thank the organizing committee of the 20th international workshop on Electromagnetic Induction in the Earth in Giza, Egypt for the invitation to present this review. I also thank Amir Khan for overall comments as well as help with improving the English presentation of this review. I am very grateful to all those who contributed material for this paper, in alphabetical order (K. Baba, A. Kelbert, A. Khan, Z. Martinec, J. Matzka, K.Ohta, N. Olsen, A. Schultz, A. Semenov, V. Semenov, H. Shimizu, P. Tarits, H. Utada, J. Velimsky) and I apologize to those whose material I could not include. This work has been supported in part by European Space Agency through ESTEC contracts No. 20944/07/NL/JA and No. 22656/09/NL/FF, and by the Russian Foundation for Basic Research under grant No. 09-05-01071-a.


  1. Alexandrescu Mandea M, Gilbert D, Le Mouel J-L, Hulot G, Saracco G (1999) An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks. J Geophys Res 104(B8):17735–17745CrossRefGoogle Scholar
  2. Baba K, Utada H, Goto T, Kasaya T, Shimizu H, Tada N (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Int. doi: 10.1016/j.pepi.2010.09.010 Google Scholar
  3. Balasis G, Egbert GD (2006) Empirical orthogonal function analysis of magnetic observatory data: Further evidence for non-axisymmetric magnetospheric sources for satellite induction studies. Geophys Res Lett 33:L11311. doi: 10.1029/2006GL025721
  4. Balasis G, Egbert GD, Maus S (2004) Local time effects in satellite estimates of electromagnetic induction transfer functions. Geophys Res Lett 31:L16610. doi: 10.1029/2004GL020147 CrossRefGoogle Scholar
  5. Banks R (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J R Astr Soc 17:457–487Google Scholar
  6. Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosyst 3:1003. doi: 10.1029/2001GC000168 CrossRefGoogle Scholar
  7. Beiner J (1973) Analysis in phases of diffusion PI-C-12 beneath 300 MEV. Nucl Phys B53:349–365CrossRefGoogle Scholar
  8. Bendat J, Piersol A (1968) Random data: analysis and measurement procedure. Wiley, New YorkGoogle Scholar
  9. Bercovici D, Karato SI (2003) Whole-mantle convection and the transition-zone water filter. Nature 425:39–44CrossRefGoogle Scholar
  10. Byrd R, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 5:1190–1208CrossRefGoogle Scholar
  11. Chamalaun FH, Barton CE (1993) Electromagnetic induction in the Australian crust: results from the Australia-wide array of geomagnetic stations. Explor Geophys 24:179–186CrossRefGoogle Scholar
  12. Chapman S, Price A (1930) The electric and magnetic state of the interior of the Earth as inferred from terrestrial magnetic variations. Phil Trans R Soc Lond A 229:427–460CrossRefGoogle Scholar
  13. Chulliat A, Lalanne X, Gaya-Pique LR, Truong F, Savary J (2009) The new Eastre Island magnetic observatory. In: Love JJ (ed) Proceedings of the XIIIth IAGA workshop on geomagnetic observatory instruments, data acquisition and processing. US Geological Survey Open-File Report 20091226, pp 47–53Google Scholar
  14. Constable S, Constable C (2004) Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity. Geochem Geophys Geosyst 5:Q01006. doi: 10.1029/2003GC000634
  15. Constable S, Parker RL, Constable C (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300CrossRefGoogle Scholar
  16. Egbert G, Booker JR, Schultz A (1992) Very long period magnetotellurics at Tucson observatory: estimation of impedances. J Geophys Res 97:15113–15128CrossRefGoogle Scholar
  17. Erofeeva S, Egbert G (2002) Efficient inverse modeling of barotropic ocean tides. J Ocean Atmos Technol 19:183–204CrossRefGoogle Scholar
  18. Faccena C, Jolivet L, Piromallo C, Morelli A (2003) Subduction and the depth of convection in the Mediterranean mantle. J Geophys Res 108(B2):2099CrossRefGoogle Scholar
  19. Fainberg E, Kuvshinov A, Mishina L, Singer B (1990) The new approach to global deep soundings. Pure Appl Geophys 134:527–531CrossRefGoogle Scholar
  20. Fujii I, Schultz A (2002) The 3D electromagnetic response of the Earth to ring current and auroral oval excitation. Geophys J Int 151:689–709CrossRefGoogle Scholar
  21. Fukao Y, Widiyantoro S, Obayashi M (2001) Stagnant slabs in the upper and lower mantle transition region. Rev Geophys 39:291–323CrossRefGoogle Scholar
  22. Fukao Y, To A, Obayashi M (2003) Whole mantle P-wave tomography using P and PP-P data. J Geophys Res 108(B1):2021. doi: 10.1029/2001JB000989
  23. Fukao Y, Koyama T, Obayashi M, Utada H (2004) Trans-Pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography. Earth Planet Sci Lett 217:425–434CrossRefGoogle Scholar
  24. Haber E, Ascher UM, Oldenburg DW (2004) Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach. Geophysics 69:1216–1228CrossRefGoogle Scholar
  25. Hae R, Ohtani E, Kubo T, Koyama T, Utada H (2006) Hydrogen diffusivity in wadsleyite and water distribution in the mantle transition zone. Earth Planet Sci Lett 243:141–148CrossRefGoogle Scholar
  26. Huang XG, Xu YS, Karato SI (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749CrossRefGoogle Scholar
  27. Ichiki M, Uyeshima M, Utada U, Guoze Z, Ji T, Mingzhi M (2001) Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys Res Lett 28:3773–3776CrossRefGoogle Scholar
  28. Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 postperovskite phase in the Earths lowermost mantle. Nature 430:442–445CrossRefGoogle Scholar
  29. Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition zone. Geophys Res Lett 22:117–120CrossRefGoogle Scholar
  30. Ito E, Katsura T (1989) A temperature profile of the mantle transition zone. Geophys Res Lett 16:425–428CrossRefGoogle Scholar
  31. Jiracek GR (1990) Near-surface and topographic distortions in electromagnetic induction. Surv Geophys 11:163–203CrossRefGoogle Scholar
  32. Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273CrossRefGoogle Scholar
  33. Karato S (1993) Importance of anelasticity in the interpretation of seismic tomography. Geophys Res Lett 20:1623–1626CrossRefGoogle Scholar
  34. Karato S (2006) Remote sensing of hydrogen in Earth’s mantle. Rev Miner Geochem 62:343CrossRefGoogle Scholar
  35. Karato S, Dai LD (2009) Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Phys Earth Planet Interiors 174:19–21CrossRefGoogle Scholar
  36. Kelbert A, Egbert G, Schultz A (2008) Non-linear conjugate gradient inversion for global EM induction: resolution studies. Geophys J Int 173:365–381CrossRefGoogle Scholar
  37. Kelbert A, Schultz A, Egbert G (2009a) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460:1003–1007CrossRefGoogle Scholar
  38. Kelbert A, Egbert G, Schultz A (2009b) Spatial variability of mantle transition zone water content: evidence from global electromagnetic induction data. Abstracts of AGU Fall Meeting, San-FranciscoGoogle Scholar
  39. Kennett B, Engdahl E (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465CrossRefGoogle Scholar
  40. Khan A, Connolly JAD, Olsen N (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J Geophys Res 111:B10102. doi: 10.1029/2006JB004270 CrossRefGoogle Scholar
  41. Khan A, Boschi L, Connolly JAD (2009) On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. J Geophys Res 114:B09305. doi: 10.1029/2009JB006399 CrossRefGoogle Scholar
  42. Khan A, Kuvshinov A, Semenov A (2010) On the heterogeneous electrical conductivity structure of the Earth’s mantle with implications for transition zone water content. J Geophys Res 116:B01103. doi: 10.1029/2010JB007458 CrossRefGoogle Scholar
  43. Korte M, Mandea M, Linthe HJ, Hemshorn A, Kotze P, Ricaldi E (2009) New geomagnetic field observations in the South Atlantic Anomaly region. Ann Geophys 52:65–82Google Scholar
  44. Koyama T (2001) A study on the electrical conductivity of the mantle by voltage measurements of submarine cables. PhD thesis, University of TokyoGoogle Scholar
  45. Koyama T, Shimizu H, Utada H, Ichiki M, Ohtani E, Hae R (2006) Water content in the mantle transition zone beneath the North Pacific derived from the electrical conductivity anomaly. AGU Geophys Monogr Ser 168:171–179CrossRefGoogle Scholar
  46. Kuvshinov A (2008) 3-D global induction in the oceans and solid Earth: recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric, and oceanic origin. Surv Geophys 29:139–186. doi: 10.1007/s10712-008-9045-z CrossRefGoogle Scholar
  47. Kuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys Res Lett 33:L18301. doi: 10.1029/2006GL027083 CrossRefGoogle Scholar
  48. Kuvshinov A, Utada H (2010) Anomaly of the geomagnetic Sq variation in Japan: effect from 3-D subterranean structure or the ocean effect? Geophys J Int. doi: 10.1111/j.1365-246X.2010.04809.x Google Scholar
  49. Kuvshinov A, Avdeev D, Pankratov O (1999) Global induction by Sq and Dst sources in the presence of oceans: bimodal solutions for non-uniform spherical surface shells above radially symmetric Earth models in comparison to observations. Geophys J Int 137:630–650CrossRefGoogle Scholar
  50. Kuvshinov A, Olsen N, Avdeev D, Pankratov O (2002) EM induction in the oceans and the anomalous behavior of coastal C-responses for periods up to 20 days. Geophys Res Lett 29(12):1595. doi: 10.1029/2001GL014409 Google Scholar
  51. Kuvshinov A, Utada H, Avdeev D, Koyama T (2005) 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited. Geophys J Int 160:505–526CrossRefGoogle Scholar
  52. Kuvshinov A, Sabaka T, Olsen N (2006a) 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle. Earth Planets Space 58:417–427Google Scholar
  53. Kuvshinov A, Junge A, Utada H (2006b) 3-D modelling the electric field due to ocean tidal flow and comparison with observations. Geophys Res Lett. doi: 10.1029/2005GL025043 Google Scholar
  54. Kuvshinov A, Manoj C, Olsen N, Sabaka T (2007) On induction effects of geomagnetic daily variations from equatorial electrojet and solar quiet sources at low and middle latitudes. J Geophys Res 112(B1):0102. doi: 10.1029/2007JB004955 Google Scholar
  55. Kuvshinov A, Semenov A, Pankratov O, Jackson A, Olsen N (2008) 3-D imaging of mantle conductivity based on inversion of satellite C-responses: Proof of concept. Expanded abstract of 19 Workshop on Electromagnetic Induction in the Earth, Beijing, ChinaGoogle Scholar
  56. Kuvshinov A, Semenov A, Pankratov O, Olsen N (2009) 3-D mapping of mantle conductivity from space. An approach and its verification. In: Proceedings of 2nd international Swarm science meeting, PotsdamGoogle Scholar
  57. Kuvshinov A, Velimsky J, Tarits P, Semenov A, Pankratov O, Toffner-Clausen L, Martinec Z, Olsen N, Sabaka T, Jackson A (2010) L2 products and performances for mantle studies with Swarm. ESA Final Report, 2010, 173 pp,
  58. Lizarralde D, Chave A, Hirth G, Schultz A (1995) Long period magnetotelluric study using Hawaii-to-California submarine cable data: implications for mantle conductivity. J Geophys Res 100(B9):17873–17884CrossRefGoogle Scholar
  59. Mackie RL, Madden T (1993) Three-dimensional magnetotelluric inversion using conjugate gradients. Geophys J Int 115:215–229CrossRefGoogle Scholar
  60. Manthilake M, Matsuzaki T, Yoshino T, Yamashita S, Ito E, Katsura T (2009) Electrical conductivity of wadsleyite as a function of temperature and water content. Phys Earth Planet Int. doi: 10.1016/j.pepi.2008.06.001 Google Scholar
  61. Martinec Z (2010) The forward and adjoint methods of global electromagnetic induction for CHAMP magnetic data. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, pp 565–624. doi: 10.1007/978-3-642-01546-5_19
  62. Martinec Z, McCreadie H (2004) Electromagnetic induction modeling based on satellite magnetic vector data. Geophys J Int 157:1045–1060CrossRefGoogle Scholar
  63. Martinec Z, Velimsky J (2009) The adjoint sensitivity method of EM induction for CHAMP magnetic data. Geophys J Int 179:1372–1396CrossRefGoogle Scholar
  64. Matzka J, Olsen N, Fox Maule C, Pedersen L, Berarducci AM, Macmillan S (2009) Geomagnetic observations on Tristan da Cuhna, South Atlantic Ocean. Ann Geophys 52:97–105Google Scholar
  65. Medin AE, Parker RL, Constable S (2007) Making sound inferences from geomagnetic sounding. Phys Earth Planet Int 160:51–59CrossRefGoogle Scholar
  66. Megnin C, Romanowicz B (2000) The three-dimensional shear velocity structure of the mantle from the inversion of body, urface and higher mode waveforms. Geophys J Int 143:709–728CrossRefGoogle Scholar
  67. Mochizuki E, YokoyamaY ShimizuI, Hamano Y (1997) Spherical harmonic analysis in terms of unevenly distributed observation points and its applications to geomagnetic data. J Geomag Geoelecr 49:1013–1033CrossRefGoogle Scholar
  68. Mosegaard K (1998) Resolution analysis of general inverse problems through inverse Monte Carlo sampling. Inverse Probl 14:405–416CrossRefGoogle Scholar
  69. Neal SL, Mackie RL, Larsen JC, Schultz A (2000) Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean. J Geophys Res 105(B4):8229–8242CrossRefGoogle Scholar
  70. Nocedal J, Wright SJ (2006) Numerical optimization. Springer, BerlinGoogle Scholar
  71. Obayashi M, Sugioka H, Yoshimitsu H, Fukao Y (2006) High temperature anomalies oceanward of subducting slabs at the 410 km discontinuity. Earth Planet Sci Lett 243:149–158CrossRefGoogle Scholar
  72. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth’s D’’ layer. Nature 430:445–448CrossRefGoogle Scholar
  73. Ohta K, Onoda S, Hirose K, Sinmyo R, Shimizu K, Sata N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in Earth’s D” layer. Science 320:89–91CrossRefGoogle Scholar
  74. Olsen N (1998) The electrical conductivity of the mantle beneath Europe derived from C-Responses from 3 h to 720 h. Geophys J Int 133:298–308CrossRefGoogle Scholar
  75. Olsen N (1999a) Long-period (30 days–1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys J Int 138:179–187CrossRefGoogle Scholar
  76. Olsen N (1999b) Induction studies with satellite data. Surv Geophys 20:309–340CrossRefGoogle Scholar
  77. Olsen N, Kuvshinov A (2004) Modelling the ocean effect of geomagnetic storms. Earth Planets Space 56:525–530Google Scholar
  78. Olsen N, Vennerstrøm S, Friis-Christensen E (2002) Monitoring magnetospheric contributions using ground-based and satellite magnetic data. In: Reigber C, Luehr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, New York, pp 245–250Google Scholar
  79. Olsen N, Haagmans R, Sabaka T, Kuvshinov A, Maus S, Purucker M, Rother M, Lesur V, Mandea M (2006) The Swarm end-to-end mission simulator study: separation of the various contributions to Earth’s magnetic field using synthetic data. Earth Planets Space 58:359–370Google Scholar
  80. Olsen N, Sabaka T, Gaya-Pique (2007) Study of an improved comprehensive magnetic field inversion analysis for Swarm. DNSC Scientific Report 1/2007 Danish National Space Center CopenhagenGoogle Scholar
  81. Olsen N, Mandea M, Sabaka TJ, Toeffner-Clausen L (2009) CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data. Geophys J Int 23:5–7. doi: 10.1111/j.1365-246X.2009.04386.x Google Scholar
  82. Olsen N, Hulot G, Sabaka TJ (2010) Sources of the geomagnetic field and the modern data that enable their investigation. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, pp 106–124. doi: 10.1007/978-3-642-01546-5_5
  83. Pankratov O, Kuvshinov A (2010) General formalism for the efficient calculation of derivatives of EM frequency domain responses and derivatives of the misfit. Geophys J Int 181:229–249CrossRefGoogle Scholar
  84. Pankratov O, Avdeev D, Kuvshinov A (1995) Electromagnetic field scattering in a homogeneous Earth: a solution to the forward problem. Phys Solid Earth 31:201–209Google Scholar
  85. Parker RL, Whaler K (1981) Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. J Geophys Res 86:9574–9584CrossRefGoogle Scholar
  86. Prieto GA, Parker RL, Thomson DJ, Vernon FL, Graham RL (2007) Reducing the bias of multitaper spectrum estimates. Geophys J Int 171:1269–1281CrossRefGoogle Scholar
  87. Riedel K, Sidorenko A (1995) Minimum bias multiple taper spectral estimation. IEEE Trans Signal Process 43:188–195CrossRefGoogle Scholar
  88. Roberts RG (1984) The long-period electromagnetic response of the earth. Geophys J R Astr Soc 78:547–572Google Scholar
  89. Rodi W, Mackie RL (2000) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187CrossRefGoogle Scholar
  90. Romanowicz B (2003) Global mantle tomography: progress status in the past 10 years. Ann Rev Earth Planet 31:303–328CrossRefGoogle Scholar
  91. Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic feld with Oersted and CHAMP data. Geophys J Int 159:521–547CrossRefGoogle Scholar
  92. Santos FAM, Soares A, Nolasco R, Rodrigues H, Luzio R, Palshin N, ISO-3D Team (2003) Lithosphere conductivity structure using the CAM-1 (Lisbon-Madeira) submarine cable. Geophys J Int 155:591–600CrossRefGoogle Scholar
  93. Schmucker U (1970) Anomalies of geomagnetic variations in the south-western United States. Bull Scripps Inst Ocean, Unif Calif 13:1–165Google Scholar
  94. Schmucker U (1979) Erdmagnetische Variationen und die elektrische Leitfahigkeit in tieferen Schichten der Erde. Sitzungsbericht und Mitteilungen Braunschweigische Wiss Gesellschaft, Sonderheft 4:45–102Google Scholar
  95. Schmucker U (1999a) A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction - I. Methods. Geophys J Int 136:439–454CrossRefGoogle Scholar
  96. Schmucker U (1999b) A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction—II. Results. Geophys J Int 136:455–476CrossRefGoogle Scholar
  97. Schmucker U (2003) Horizontal spatial gradient sounding and geomagnetic depth sounding in the period range of daily variations, In: Protokoll über das Kolloquium Elektromagnetische Tiefenforschung, Königstein, pp 228–237Google Scholar
  98. Schultz A (2010) EMScope: a continental scale magnetotelluric observatory and data discovery resource. Data Sci J 8:IGY6–IGY20CrossRefGoogle Scholar
  99. Schultz A, Larsen JC (1987) On the electrical conductivity of the mid-mantle: I. Calculation of equivalent scalar MT response functions. Geophys J R Astr Soc 88:733–761Google Scholar
  100. Schultz A, Pritchard G (1999) A three-dimensional inversion for large scale structure in a spherical domain. In: Spies B, Oristaglio M (eds) Three dimensional electromagnetics. Geophysical Developments Series, vol 7. Society of Exploration Geophysicists, pp 451–476Google Scholar
  101. Schuster A (1889) The diurnal variation of terrestrial magnetism. Phil Trans R Soc Lond A 180:467–518CrossRefGoogle Scholar
  102. Semenov V, Jozwiak W (2006) Lateral variations of the mid-mantle conductance beneath Europe. Tectonophys 416:279–288CrossRefGoogle Scholar
  103. Semenov A, Kuvshinov A (2010) Spatial distribution of the mantle conductivity as seen from the 3-D inversion of ground-based C-responses. Geophysical Research Abstracts 12 EGU2010-12565Google Scholar
  104. Semenov V, Shuman V (2010) Impedances for induction soundings of the Earth’ mantle. Acta Geophys 58:527–542CrossRefGoogle Scholar
  105. Semenov V, Pek J, Adam A, Jozwiak W, Ladanyvskyy B, Logvinov I, Pushkarev P, Vozar J (2008) Electrical structure of the upper mantle beneath Central Europe: results of the CEMES project. Acta Geophys 56:957–981CrossRefGoogle Scholar
  106. Shimizu H, Utada H (1999) Ocean hemisphere geomagnetic network: its instrumental design and perspective for long-term geomagnetic observations in the Pacific. Earth Planets Space 51:917–932Google Scholar
  107. Shimizu H, Koyama T, Baba K, Utada H (2009) Three-dimensional geomagnetic response functions for global and semi-global scale induction problems. Geophys J Int 178:123–144CrossRefGoogle Scholar
  108. Shimizu H, Koyama T, Baba K, Utada H (2010a) Revised 1-D mantle electrical conductivity structure beneath the north Pacific. Geophys J Int 180:1030–1048CrossRefGoogle Scholar
  109. Shimizu H, Utada H, Baba K, Koyama T, Obayashi M, Fukao Y (2010b) Three-dimensional imaging of electrical conductivity in the mantle transition zone beneath the North Pacific Ocean by a semi-global induction study. Phys Earth Planet Int. doi: 10.1016/j.pepi Google Scholar
  110. Singer B (1995) Method for solution of Maxwell’s equations in nonuniform media. Geophys J Int 120:590–598CrossRefGoogle Scholar
  111. Singer B, Kuvshinov A, Mishina L, Fainberg E (1993) Global geomagnetic sounding: new methodology and results. Phys Solid Earth 29:35–43Google Scholar
  112. Tarits P, Mandea M (2010) The heterogeneous electrical conductivity structure of the lower mantle. Phys Earth Planet Int. doi: 10.1016/j.pepi.2010.08.002 Google Scholar
  113. Tarits P, Wahr J, Lognonne P (1992) Electrical conductivity heterogeneities in the mantle: correlation with mantle velocity structure. Abstracts of AGU Fall Meeting, San-FranciscoGoogle Scholar
  114. Tarits P, Hautot S, Perrier F (2004) Water in the mantle: results from electrical conductivity beneath French Alps. Geophys Res Lett 31:L06612. doi: 10.1029/2003GL019277
  115. Toffelmier DA, Tyburczy JA (2007) Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447:991–994CrossRefGoogle Scholar
  116. Toh H, Hamano Y, Ichiki M, Utada H (2004) Geomagnetic observatory operates at the seafloor in the Northwest Pacific Ocean. EOS 85:467, 473Google Scholar
  117. Toh H, Hamano Y, Ichiki M (2006) Long-term seafloor geomagnetic station in the northwest Pacific: A possible candidate for a seafloor geomagnetic observatory. Earth Planets Space 58:697–705Google Scholar
  118. Toh H, Hamano Y, Goto T, Utada H (2010) Long-term seafloor electromagnetic observation in the northwest Pacific may detect the vector geomagnetic secular variation. Data Sci J 9:IGY100–IGY109CrossRefGoogle Scholar
  119. Trampert J, Deschamps F, Resovsky J, Yuen D (2004) Chemical heterogeneities throughout the lower mantle. Science 306:853–855CrossRefGoogle Scholar
  120. Utada H, Koyama T, Shimizu H, Chave A (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Res Lett 30(4):1194–1198. doi: 10.1029/2002GL016092 CrossRefGoogle Scholar
  121. Utada H, Koyama T, Obayashi M, Fukao Y (2009) A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry. Earth Planet Sci Lett 281:249–257CrossRefGoogle Scholar
  122. Uyeshima M, Schultz A (2000) Geoelectromagnetic induction in a heterogeneous sphere: a new 3-D forward solver using a staggered-grid integral formulation. Geophys J Int 140:636–650CrossRefGoogle Scholar
  123. Velimsky J (2010) Electrical conductivity in the lower mantle: Constraints from CHAMP satellite data by time-domain EM induction modeling, Phys Earth Planet Int 180(3–4):111–117. doi: 10.1016/j.pepi.2010.02.007
  124. Velimsky J, Martinec Z (2005) Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. Geophys J Int 161:81–101CrossRefGoogle Scholar
  125. Velımsky J, Martinec Z, Everett ME (2006) Electrical conductivity in the Earth’s mantle inferred from CHAMP satellite measurements—I. Data processing and 1-D inversion. Geophys J Int 166:529–542CrossRefGoogle Scholar
  126. Vozar J, Semenov V (2010) Compatibility of induction methods for mantle sounding. J Geophys Res 115:B03101. doi: 10.1029/2009JB006390 CrossRefGoogle Scholar
  127. Wang D, Mookherjee M, Xu YS, Karato SI (2006) The effect of hydrogen on the electrical conductivity in olivine. Nature 443:977–980CrossRefGoogle Scholar
  128. Weidelt P (1972) The inverse problem of geomagnetic induction. Z Geophys 38:257–289Google Scholar
  129. Weiss CJ (2010) Triangulated finite difference methods for global scale electromagnetic induction simulations of whole mantle electrical heterogeneities. Geochem Geophys Geosyst (submitted)Google Scholar
  130. Xu Y, Poe BT, Shankland TJ, Rubie DC (1998) Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper mantle conditions. Science 280:1415–1418CrossRefGoogle Scholar
  131. Yoshino T, Katsura T (2009) Reply to Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Discussion. Phys Earth Planet Interiors 174:22–23CrossRefGoogle Scholar
  132. Yoshino T, Matsuzaki T, Yamashina S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976CrossRefGoogle Scholar
  133. Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008) Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451:326–329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of GeophysicsETHZurichSwitzerland

Personalised recommendations