Surveys in Geophysics

, 32:291 | Cite as

Surface Deformation and Seismic Rebound: Implications and Applications

  • Chieh-Hung Chen
  • Ta-Kang Yeh
  • Jann-Yenq Liu
  • Chung-Ho Wang
  • Strong Wen
  • Horng-Yuan Yen
  • Shu-Hao Chang


An earthquake process includes pre-seismic stress accumulation, co-seismic rock rupture and post-seismic elastic and/or viscoelastic rebound. Although co-seismic and post-seismic deformations have been readily observed using the global positioning system (GPS), detecting pre-seismic stress accumulation hidden in time-series data remains challenging. This study applies the Hilbert–Huang transform to extract non-linear and non-stationary pre-earthquake deformation data from GPS records for central Taiwan. By converting the derived surface deformation into horizontal azimuths, the randomly oriented GPS-azimuths are reoriented in a similar direction several days before and after earthquakes due to loading and rebound stress, respectively. Analytical results demonstrate that the stress accumulation and release along the entire course of an earthquake process provide significant evidence supporting the seismic rebound theory. This finding would be applicable to areas with dense GPS networks and active plate interactions. Surface deformations detected by the proposed analytical technique have encouraging potential for mitigating future seismic hazards.


Global positioning system Seismic rebound theory Hilbert–Huang transform 



This paper has greatly benefited from constructive comments from three anonymous reviewers. This work was financially supported by grants from National Science Council of Taiwan (NSC 99-2111-M-231-001-MY3), and Academia Sinica.


  1. Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, SausalitoGoogle Scholar
  2. Blewitt G, Lavallee D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):2145. doi: 10.1029/2001JB000570 CrossRefGoogle Scholar
  3. Cohen SC (1994) Evaluation of the importance of model features for cyclic deformation due to dip-slip faulting. Geophys J Int 119:831–841CrossRefGoogle Scholar
  4. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute. University of Bern, BernGoogle Scholar
  5. Den Hartog JP (1961) Mechanics. Courier Dover Publications, New YorkGoogle Scholar
  6. Felzer KR, Abercrombie RE, Ekström G (2004) A common origin for aftershocks, foreshocks, and multiplets. Bull Seism Soc Am 94:88–99CrossRefGoogle Scholar
  7. Gahalaut VK, Nagarajan B, Catherine JK, Skumar S (2006) Constraints on 2004 Sumatra Andaman earthquake rupture from GPS measurements in Andaman-Nicobar Islands. Earth Planet Sc Lett 242:365–374CrossRefGoogle Scholar
  8. Ho CS (1988) An introduction to the geology of Taiwan, 2nd edn. Central Geological Survey, The Ministry of Economic Affairs, TaipeiGoogle Scholar
  9. Hsu YJ, Simons M, Avouac JP, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y (2006) Frictional afterslip following the Mw 8.7, 2005 Nias-Simeulue earthquake, Sumatra. Science 312:1921–1926CrossRefGoogle Scholar
  10. Hsu YJ, Segall P, Yu SB, Kuo LC, Williams CA (2007) Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake. Geophys J Int 169:367–379CrossRefGoogle Scholar
  11. Hu Y, Wang K, He J, Klotz J, Khazaradze G (2004) Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake. J Geophys Res 109:B12403. doi: 10.1029/2004JB003163 CrossRefGoogle Scholar
  12. Huang NE, Wu Z (2008) A review on Hilbert–Huang transform: method and its applications to geophysical studies. Rev Geophys 46:RG2006CrossRefGoogle Scholar
  13. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A 454:903–995CrossRefGoogle Scholar
  14. Huang NE, Shen Z, Long SR, Shen SSP, Hsu NH, Xiong D, Qu W, Gloersen P (2003) On the establishment of a confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc Lond Ser A 459:2317–2345CrossRefGoogle Scholar
  15. Kao H, Liu YH, Liang WT, Chen WP (2002) Source parameters of regional earthquake in Taiwan: 1999–2000 including the Chi-Chi earthquake sequence. Terr Atmo Ocean Sci 13:279–298Google Scholar
  16. Liang WT, Liu YH, Kao H (2003) Source parameters of regional earthquake in Taiwan: January–December 2001. Terr Atmo Ocean Sci 14:249–260Google Scholar
  17. Liang WT, Liu YH, Kao H (2004) Source parameters of regional earthquake in Taiwan: January–December 2002. Terr Atmo Ocean Sci 15:727–741Google Scholar
  18. Liu CC, Linde AT, Sacks IS (2009) Slow earthquakes triggered by typhoons. Nature 459:833–836CrossRefGoogle Scholar
  19. Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A (2005) GPS evidence for northward motion of the Sinai Block Implications for E. Mediterranean tectonics. Earth Planet Sc Lett 238:217–224CrossRefGoogle Scholar
  20. Miura N, Sakai A, Taesiri Y, Yamanouchi T, Yasuhara K (1990) Polymer grid reinforced pavement on soft clay grounds. Geotext Geomembr 9:99–123CrossRefGoogle Scholar
  21. Norabuena E, Dixon TH, Schwartz S, DeShon H, Newman A, Protti M, Gonzalez V, Dorman L, Flueh ER, Lundgren P, Pollitz F, Sampson D (2004) Geodetic and seismic constraints on some seismogenic zone processes in Costa Rica. J Geophys Res 109:B11403. doi: 10.1029/2003JB002931 CrossRefGoogle Scholar
  22. Prawirodirdjo L, Bock Y (2004) Instantaneous global plate motion model from 12 years of continuous GPS observations. J Geophys Res 109:B08405. doi: 10.1029/2003JB002944 CrossRefGoogle Scholar
  23. Ray J, Altamimi Z, Collilieux X, Van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64CrossRefGoogle Scholar
  24. Reid HF (1910) The mechanics of the earthquake, v. 2 of The California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission: Carnegie Institution of Washington Publication 87 C192 p. 2Google Scholar
  25. Robinson R, McGinty PJ (2000) The enigma of the Arthur’s Pass, New Zealand, earthquake 2. The aftershock distribution and its relation to regional and induced stress field. J Geophys Res 105:16139–16150CrossRefGoogle Scholar
  26. Rogers G, Dragert H (2003) Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942. doi: 10.1126/science.1084783 CrossRefGoogle Scholar
  27. Ruina A, Pratap R (2002) Introduction to statics and dynamics. Oxford University Press, OxfordGoogle Scholar
  28. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Geod 107:13–34CrossRefGoogle Scholar
  29. Tsai YB (1986) Seismotectonics of Taiwan. Tectonophysics 125:17–38CrossRefGoogle Scholar
  30. Ueda H, Ohtake M, Sato H (2001) Afterslip on the plate interface following the 1978 Miyagi-Oki, Japan, earthquake, as revealed from geodetic measurement data. Tectonophysics 338:45–57CrossRefGoogle Scholar
  31. Van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallee D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28:651–654CrossRefGoogle Scholar
  32. Wang K (2007) Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In: Dixon TH, Moore JC (eds) The Seismogenic Zone of Subduction Thrust Faults, MARGINS Theoretical and Experimental Earth Science Series, Columbia Univ press, New York, USA, pp 545–575Google Scholar
  33. Wang CS, Liou YA, Yeh TK (2008) Impact of surface meteorological measurements on GPS height determination. Geophys Res Lett 35:L23809. doi: 10.1029/2008GL035929 CrossRefGoogle Scholar
  34. Wernicke B, Davis JL, Bennett RA, Normandeau JE, Friedrich AM (2004) Tectonic implications of a dense continuous GPS velocity field at Yucca Mountain, Nevada. J Geophys Res 109:B12404CrossRefGoogle Scholar
  35. Wyss M, Slater L, Burford RO (1990) Decrease in deformation rate as a possible precursor to the next Parkfield earthquake. Nature 345:428–431. doi: 10.1038/345428a0 CrossRefGoogle Scholar
  36. Xu G (2007) GPS–Theory, Algorithms and Applications, 2nd edn. Springer, HeidelbergGoogle Scholar
  37. Yeh TK, Hwang C, Xu G (2008) GPS height and gravity variations due to ocean tidal loading around Taiwan. Surv Geophys 29:37–50CrossRefGoogle Scholar
  38. Yeh TK, Hwang C, Xu G, Wang CS, Lee CC (2009) Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy. Meas Sci Technol 20:075105. doi: 10.1088/0957-0233/20/7/075105 CrossRefGoogle Scholar
  39. Yen YT, Ma KF, Wen YY (2008) Slip partition of the 26 December 2006 Pingtung, Taiwan (M 6.9, M 6.8) earthquake doublet determined from teleseismic waveforms. Terr Atmos Ocean Sci 19:567–578. doi: 10.3319/TAO.2008.19.6.567 CrossRefGoogle Scholar
  40. Yu SB, Chen HY, Kuo LC (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics 274:41–59CrossRefGoogle Scholar
  41. Yu SB, Kuo LC, Hsu YJ, Su HH, Liu CC, Hou CS, Lee JF, Lai TC, Liu CC, Liu CL, Tseng TF, Tsai CS, Shin TC (2001) Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan earthquake. Bull Seism Soc Am 91:995–1012CrossRefGoogle Scholar
  42. Yu SB, Hsu YJ, Kuo LC, Chen HY, Liu CC (2003) GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan earthquake. J Geophys Res 108:2520. doi: 10.1029/2003JB002396 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Chieh-Hung Chen
    • 1
  • Ta-Kang Yeh
    • 2
  • Jann-Yenq Liu
    • 3
    • 4
  • Chung-Ho Wang
    • 1
  • Strong Wen
    • 5
  • Horng-Yuan Yen
    • 6
  • Shu-Hao Chang
    • 1
  1. 1.Institute of Earth SciencesAcademia SinicaTaipeiTaiwan
  2. 2.Institute of Geomatics and Disaster Prevention TechnologyChing Yun UniversityJhongliTaiwan
  3. 3.Institute of Space ScienceNational Central UniversityJhongliTaiwan
  4. 4.Center for Space and Remote Sensing ResearchNational Central UniversityJhongliTaiwan
  5. 5.Institute of SeismologyNational Chung Cheng UniversityChiayiTaiwan
  6. 6.Institute of GeophysicsNational Central UniversityJhongliTaiwan

Personalised recommendations