Advertisement

Surveys in Geophysics

, Volume 28, Issue 2–3, pp 239–272 | Cite as

How is the European Lithosphere Imaged by Magnetotellurics?

  • Toivo Korja
Review Article

Abstract

I review recent investigations on the electrical conductivity of the lithosphere and asthenosphere in Europe. The principal method in the reviewed studies is the magnetotelluric method, but in many cases other electromagnetic methods (e.g., magnetovariational profilings and geomagnetic depth soundings) have provided additional information on subsurface conductivity or have been the primary method. The review shows that the magnetotelluric method has been used, and is being used, in all kinds of environments and for many different processes shaping the crust and lithosphere. The crust is very heterogeneous, both with respect to the scale of conductive/resistive features and interpretations: research targets vary from Archaean palaeostructures to ongoing processes. The European database of the depth to the lithosphere-asthenosphere boundary (LAB) in Europe is updated, and a new map showing lateral variations of the depth of LAB is provided. The compilation shows that (1) the Phanerozoic European lithosphere, with considerable variations (45–150 km), is much thinner than the Precambrian European lithosphere, (2) the Trans-European Suture Zone is a major electrical border in Europe separating electrically (as well as geophysically and geologically in general) two quite different settings, (3) the thinnest lithosphere is found under the extensional Pannonian Basin (45–90 km), (4) in most of the East European Craton there are no indications of a high conductivity zone in upper mantle. In many regions there is no information at all on upper mantle conductivity, which calls for pan-European projects to operate arrays of simultaneously recording instruments with long recording periods (2–8 months) and dense spatial sampling (20–50 km).

Keywords

Lithosphere Asthenosphere Upper mantle Electrical conductivity Magnetotelluric Electromagnetic Europe 

Notes

Acknowledgements

I wish to express my sincere thanks to the Program Committee and LOC of the El Vendrell workshop, who offered me a chance to prepare and deliver this review. In particular, I wish to give my thanks to J. Ledo and P. Queralt. My best thanks goes also to all colleagues, who provided me material on electrical conductivity and other geophysical and geological data in Europe. Last but not least, the guest editors of the review volume, P. Queralt and J. Weaver, are thanked for their guidance and patience. Prof. Alan Jones and an anonymous referee provided many useful comments that have improved the manuscript. Finally, I would like to thank University of Oulu, the Finnish Väisälä foundation and the Academy of Finland (EMMA project) for funds to prepare the review and to attend the workshop.

References

  1. Ádám A (1976) Results of deep electromagnetic investigations. In: Ádám A (ed) Geoeletric and geothermal studies. KAPG Geophysical Monograph, Akademiai Kiado, BudapestGoogle Scholar
  2. Ádám A (2005) Graphite/graphitic rocks as cause of the electric conductivity anomaly and their relationship to the tectonics – A review. Acta Geod Geoph Hung 40(3–4):391–411Google Scholar
  3. Ádám A, Duma G, Gutdeutsch R, Verö J, Wallner Á (1986a) Periadriatic lineament in the Alps studied by magnetotellurics. J Geophys 59:103–111Google Scholar
  4. Ádám A, Paarma H, Pospisil L (1986b) Perspectives on electromagnetic deep sounding in ore prognostication. Acta Geod Geophys et Mont Hung 21(1–2):215–227Google Scholar
  5. Ádám A, Ernst T, Jankowski J, Jóźwiak W, Hvozdara M, Szarka L, Wesztergom V, Logvinov I, Kulik S (1997) Electromagnetic induction profile (PREPAN95) from the East European Platform (EEP) to the Pannonian Basin. Acta Geod Geoph Hung 32(1–2):203–223Google Scholar
  6. Ádám A, Wesztergom V (2001) An attempt to map the depth of the electrical asthenosphere by deep magnetotelluric measurements in the Pannonian Basin (Hungary). Acta Geol Hungarica 44(2–3):167–192Google Scholar
  7. Ádám A, Novak K, Szarka L (2005) Tectonic weak zones determined by magnetotellurics along the cel-7 deep seismics profile. Acta Geod Geoph Hung 40(3–4):413–430Google Scholar
  8. Almeida EP, Pous J, Monteiro Santos FA, Fonseca P, Marcuello A, Queralt P, Nolasco R, Mendez Victor LA (2001) Electromagnetic imaging of a transpressional tectonics in SW Iberia. Geophys Res Lett 28(3):439–442Google Scholar
  9. Almeida E, Monteiro Santos F, Mateus A, Heise W, Pous J (2005) Magnetotelluric measurements in SW Iberia: New data for the Variscan crustal structures. Geophys Res Lett 32, L08312, doi: 10.1029/2005GL022596Google Scholar
  10. Armadillo E, Bozzo E, Červ V, De Santis A, Di Mauro D, Gambetta M, Meloni A, Pek J, Speranza F (2001) Geomagnetic depth sounding in the Northern Apennines (Italy). Earth Planets Space 53:385–396Google Scholar
  11. Avtoneyev SV, Ananyeva YeM, Bashta KG, Bellavin OV, Bulashevich YuP, Druzhinin VS, Dyakonova AG, Zoloyev KK, Kolmogorova VV, Koroteyev VA, Nikonova FI, Popov BA, Puchkov VN, Rapoport MS, Rybalko VM, Ryzhiy BP, Semenov BG, Tavrin IF, Tiunova AM, Fedorova NV, Kachay YuV, Chursin AV, Shapiro VA, Shchapov VA (1992) Deep structure of the Urals from geophysical data. In: Belousev VV, Pavlenkova NI, Kvyatkovskaya GN (eds) Structure of the Crust and upper Mantle of the (former) USSR Intern Geol Rev 34:263–278Google Scholar
  12. Baba K (2005) Electrical structure in marine tectonic settings. Surveys in Geophys 26:701–731Google Scholar
  13. Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys 62:119–127Google Scholar
  14. Bahr K, Olsen N, Shankland TJ (1993) On the combination of the magnetotelluric and the geomagnetic depthsounding method for resolving an electrical conductivity increase at 400 km depth. Geophys Res Lett 20(24):2937–2940Google Scholar
  15. Bahr K (1992a) Erste Ergebnisse der langperiodischen Magnetotellurik in den Alpen: Eine 200 km mächtige Lithosphäre? In: Haak V, Rodeman H (eds) 14. Kolloquium “Electromagnetische Tiefenforschung”, Borkheide, 25.5–29.5.1992, Deutsche Geophysikalische Gesellschaft eVGoogle Scholar
  16. Bahr K (1992b) Auflösung der Asthenosphäre in elektromagnetischen Sondierungen. Deutsche Geophysikalische Gesellschaft eV 3:15–23Google Scholar
  17. Bayrak M, Nalbant SS (2001) Conductive crust imaged in western Turkey by MT. Geophys Res Lett 28:3521–3524Google Scholar
  18. Beblo M, Björnsson A, Arnason K, Stein B Wolfgram P (1983) Electrical conductivity beneath Iceland – constraints imposed by magnetotelluric results on temperature, partial melt, crust and mantle structure. J Geophys 53:16–28Google Scholar
  19. Bejarano-Gerke, Jödicke H (1983) Magnetotellurik im Munsterland und Niedrrhein. 10. Kolloquium “Electromagnetische Tiefenforschung”, Grafrath/Oberbay (1984), Deutsche Geophysikalische Gesellschaft eVGoogle Scholar
  20. Berdichevskii MN, Borisova VP, Golubtsova NS, Ingerov AI, Konovalov YuF, Kulikov AV, Solodilov LN, Vhernyavskii GA, Shpak IP (1996) Interpretation of Magnetotelluric Soundings in the Lesser Caucasus. Izvestiya Phys Solid Earth 32(4):352–368Google Scholar
  21. Blumecke T (1984) Untersuchungen zur Tiefbohrlokation Oberpfalz. 10. Kolloquium “Electromagnetische Tiefenforschung”, Grafrath/Oberbay (1984), Deutsche Geophysikalische Gesellschaft eVGoogle Scholar
  22. Boerner DE, Kurtz RD, Craven JA (1996) Electrical conductivity and Paleo-Proterozoic foredeeps. Journal of Geophysical Research 101(B6):13775–13791Google Scholar
  23. Bogdanova SV (1993) Segments of the East European Craton. In Gee DG, Beckholmen M (eds), EUROPROBE Symposium in Jablonna 1991. Polish Acad Sci Eur Sci Foundation A-20(255):33–38Google Scholar
  24. Brown C (1994) Tectonic interpretation of regional conductivity anomalies. Surveys Geophys 15:123–157Google Scholar
  25. Buchter Ch (1984) Vergleichende Untersuchung magnetotellurischer Tiefensondierungen und Bohrlochmessungen an der Tiefbohrung Munsterland 1. 10. Kolloquium “Electromagnetische Tiefenforschung”, Grafrath/Oberbay (1984), Deutsche Geophysikalische Gesellschaft eVGoogle Scholar
  26. Braitenberg C, Zadro M (1990) The magnetotelluric campaign in Eastern Alps, NE-Italy: regional and local 2-D responses of the seismic zone. Bull Geof Teor ed Applicata XXXII(N 126):140–156Google Scholar
  27. Braitenberg C, Capuano P, Gasparini P, Zadro M (1994) Interpretation of long period magnetotelluric soundings in Friuli (northeast Italy) and the electrical characteristics of the lithosphere. Geophys J Int 117:196–204 Google Scholar
  28. Brasse H, Červ V, Ernst T, Hoffmann N, Jankowski J, Jóźwiak W, Korja T, Kreutzmann A, Neska A, Palshin N, Pedersen L, Scwartz G, Smirnov M, Sokolova E, Varentsov I (2006) Probing electrical conductivity of the trans-European Suture Zone. EOS 87(28):281–287Google Scholar
  29. Burakhovich TK, Gordienko VV, Kulik SN, Logvinov IM (1996) The electrical conductivity of the crust and upper Mantle of Ukraine. Izvestiya Phys Solid Earth 32(4):332–340Google Scholar
  30. Carlsäter M (2003) Magnetotelluric measurements in the Swedish Caledonides. Unpublished MSc thesis, Uppsala University, Department of Earth Sciences, Geophysics, Uppsala, Sweden, p 33Google Scholar
  31. Červ V, Kováčiková S, Pek J, Pěčová J, Praus O (1997a) Model of electrical conductivity distribution across Central Europe. J Geomag Geoelectr 49:1585–1600Google Scholar
  32. Červ V, Pek J, Praus O (1997b) The present state of art of long period magnetotellurics in the western part of the Bohemian Massif. J Geomg Geoelectr 49:1559–1583Google Scholar
  33. Červ V, Kováčiková S, Pek J, Pěčová J, Praus O (2001) Geoelectrical structure across the Bohemian Massif and the transition zone to the West Carpathians. Tectonophysics 332:201–210Google Scholar
  34. Červ V, Kováčiková S, Pek J, Pěčová J, Praus O (2002) Modelling of conductivity structures generating anomalous induction at the eastern margin of the Bohemian massif and the West Carpathians. Acta Geophys Pol 50(4):527–545Google Scholar
  35. Caglar I (2001) Electrical resistivity structure of the northwestern Anatolia and its tectonic implications for the Sakarya and Bornova zones. Phys Earth Planet Int 125:95–110Google Scholar
  36. Claesson S, Bibikova E, Bogdanova S, Skobelev V (2006) Archaean terranes, Palaeoproterozoic reworking and accretion in the Ukrainian Shield, East European Craton. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoirs 32Google Scholar
  37. Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoirs 32Google Scholar
  38. Dyakonova AG, Shestakov AF, Vardanyants IL, Godneva GS (1990) Results of deep magnetotelluric sounding in the Ural region. Izvestiya Physics of Solid Earth 26(2):162–172Google Scholar
  39. EMTESZ Working Group (2006) Geoelectrical image of the Trans-European Suture Zone EMTESZ project in Poland. S8-E4 in Extended Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006, 6 pp http://www.ub.edu/18emiw/S8-%20Expanded%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  40. Erceugt WG (1992) An electrical resistivity transect from the Alps to the Baltic Sea(Central segment of the EGT). Tectonophysics 207:123–139Google Scholar
  41. Ernst T, Jankowski J, Jóźwiak W, Lefeld J, Logvinov I (2002) Geoelectrical model along a profile across the Tornquist–Tesseyre zone in Southeastern Poland. Acta Geophysica Polonica 50(4):505–515Google Scholar
  42. Fainberg EB, Andrieux P, Astapenko VN, Geren R, Zhdanov MS, Singer BSh, Ingerov AI, Lapitskii AI, Vasil’eva TA (1998) Deep electromagnetic soundings in Belarus: Europrobe crustal soundings. Izvestiya Phys Solid Earth 34(6):486–495Google Scholar
  43. Feldman IS, Erinchek YuM, Okulessky BA, Dovgal GN (2006) The deep geoelectric structure of the European part of Russia and contiguous territories. IAGA WG 1.2 on Electromagnetic Induction in the Earth S7–16 in Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006, 1 pp http://www.ub.es/18emiw/S7-%20Short%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  44. Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoirs 32Google Scholar
  45. Fournier HG (1970) Contribution au developpment de la methode magnetotellurique notament en vue de la determination des structures profondes. These a la Faculte des Sciences de l’Universite de ParisGoogle Scholar
  46. Fournier HG, Ádám A, DeMiguel L, Sanclement E (1971) Proposal for a first Upper Mantle Magnetotelluric E-W profile across Europe. Acta Geod Geophys et Mont Hung 6(3–4):457–477Google Scholar
  47. Galanopoulos D, Hutton VRS, Dawes GJK (1991) The Milos geothermal field: modelling and interpretation of electromagnetic induction studies. Phys Earth Planet Int 66:76–91Google Scholar
  48. Galanopoulos D, Sakkas V, Kosmatos D, Lagios E (2005) Geoelectric investigation of the Hellenic subduction zone using long period magnetotelluric data. Tectonophysics 409:73–84Google Scholar
  49. Gee DG, Stephenson RA (2006) The European lithosphere: an introduction. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, Geological Society, London, Memoirs 32Google Scholar
  50. Gharibi M, Korja T, Pedersen LB (2000) Magnetotelluric soundings across the Scandinavian Caledonides, Jämtland, Sweden. In: Gharibi M (ed) Electromagnetic studies of the continental crust in Sweden, Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, Uppsala, Sweden, p 513Google Scholar
  51. Glover WJP, Pous J, Queralt P, Muńoz JA, Liesa M, Hole M (2000) Integrated two-dimensional lithospheric conductivity modelling in the Pyrenees using field-scale and laboratory measurements. Earth Planet Sci Lett 178:59–72Google Scholar
  52. Gregersen S, Voss P, TOR Working Group (2002) Summary of project TOR: delineation of a stepwise, sharp, deep lithosphere transition across Germany–Denmark–Sweden. Tectonophysics 360:61–73Google Scholar
  53. Gürer A (1996) Deep conductivity structure of the North Anatolian Fault zone and the Istanbul Sakarya zones along the Gölpazari-Akcaova profile, Northwest Anatolia. Int Geol Rev 38:727–737Google Scholar
  54. Gürer A, Bayrak M, Gürer ÖF (2004) Magnetotelluric images of the crust and mantle in the southwestern Taurides. Turkey Tectonophysics 391:109–120Google Scholar
  55. Harangi S, Downes H, Seghed I (2006) Tertiary–Quaternary subduction processes and related magmatism in the Alpine–Mediterranean region. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoirs 32Google Scholar
  56. Heinson G (1999) Electromagnetic studies of lithosphere and asthenosphere. Surveys Geophys 20:229–255Google Scholar
  57. Hjelt S-E, Korja T (1993) Lithospheric and upper mantle structures, results of electromagnetic soundings in Europe. Phys Earth Planetary Interiors 79:137–177Google Scholar
  58. Hjelt S-E, Korja T, Kozlovskaya E, Lahti I, Yliniemi J, BEAR, SVEKALAPKO Seismic Tomography Working Groups (2006) Electrical conductivity and seismic velocity structures of the lithosphere beneath the Fennoscandian Shield. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, Geological Society, London, Memoirs 32Google Scholar
  59. Hoffmann N, Jödicke H, Horejschi L (2005) Regional distribution of the Lower Carboniferous Culm and Carboniferous limestone facies in the North German Basin – derived from magnetotelluric soundings. Z dt Ges Geowiss 156(2):323–339Google Scholar
  60. Hutton VRS, Galanopoulos D, Dawes GJK, Pickup GE (1989) A high resolution magnetotelluric survey of the Milos geothermal prospect. Geothermics 18(4):521–532Google Scholar
  61. Ingerov AI, Rokityansky II, Tregubenko VI (1999) Forty years of MTS studies in the Ukraine. Earth, Planets and Space 51:1127–1133Google Scholar
  62. Jankowski J (1967) The marginal structure of the east European platform in Poland on the basis of data on geomagnetic field variations. Publs Inst Geophys Pol Acad Sci 14:93–102Google Scholar
  63. Jankowski J, Tarlowski Z, Praus O, Pěčová J, Petr V (1985) The results of deep electromagnetic sounding in the West Carpathians. J Roy Astron Soc 80:561–574Google Scholar
  64. Jankowski J, Praus O, Jóźwiak W (2005) Carpathian anomaly of electrical conductivity: history of its discovery and interpretation. Publs Inst Geophys Pol Acad Sci C-95(386):17–27Google Scholar
  65. Jensen SL, Thybo H, The POLONAISE’97 Working Group (2002) Moho topography and lower crustal wide-angle reflectivity around the TESZ in southern Scandinavia and northeastern Europe. Tectonophysics 360:187–213Google Scholar
  66. Jödicke H, Untiedt J, Olgemann W, Schulte L, Wagenitz V (1983) Electrical conductivity structure of the crust and upper mantle beneath the Thenish Massif. In: Fuchs K (ed) Plateau uplift. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  67. Jödicke H, Kruhl JH, Ballhaus Ch, Giese P, Untiedt J (2004) Syngenetic, thin graphite-rich horizons in lower crustal rocks from the Serre San Bruno, Calabria (Italy), and implications for the nature of high-conducting deep crustal layers. Phys Earth Planet Int 141:37–58Google Scholar
  68. Jones AG (1980) Geomagnetic Induction studies in Scandinavia – I. Determination of the inductive response function from the magnetometer data. J Geophys 48:181–194Google Scholar
  69. Jones AG (1982a) Observations of the electric asthenosphere beneath Scandinavia. Tectonophysics 90:37–55Google Scholar
  70. Jones AG (1982b) On the electrical crust-mantle structure in Fennoscandia: no Moho and the asthenosphere revealed? Geophys J Roy Astron Soc 68:371–388Google Scholar
  71. Jones AG (1984) The electrical structure of the lithosphere and asthenosphere beneath the Fennoscandian shield. J Geomag Geoelectr 35:811–827Google Scholar
  72. Jones AG (1998) Waves of the future: Superior inferences from collocated seismic and electromagnetic experiments. Tectonophysics 286:273–298Google Scholar
  73. Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. Lithos 48:57–80Google Scholar
  74. Jones AG, Olafsdottir B, Tiikkainen J (1983) Geomagnetic induction studies in Scandinavia – III. Magnetotelluric observations. J Geophys 54:35–50Google Scholar
  75. Jones AG, Thybo H, Maguire P (2006) EuroArray: a programme for the 4D study of the Assembly of the European Continent. Geophys Res Abstracts 8:09029Google Scholar
  76. Jóźwiak W, Ernst T (2005) Main conductivity anomalies in Poland in relation to the geological structure. Publs Inst Geophys Pol Acad Sci C-95(386):5–15Google Scholar
  77. Junge A (1984) Einige Ausfuhrungen zu Messungen tellurischer Felder mit Hilfe einer Erdgasleitung. 10 Kolloquium “Electromagnetische Tiefenforschung”, Grafrath/Oberbay 1984, Deutsche Geophysikalische Gesellschaft eV, pp 137–144Google Scholar
  78. Kaikkonen P, Vanyan LL, Hjelt S-E, Shilovsky AP, Pajunpää K, Shilovsky PP (1983) A preliminary geoelectrical model of the Karelian megablock of the Baltic Shield. Phys Earth Planet Inter 32:301–305Google Scholar
  79. Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273Google Scholar
  80. Karato S, Jung H (1998) Water, partial melting and the origin of the seismic low velocity and high attenuation zone ibn the upper mantle. Earth Planet Sci Lett 157:193–207Google Scholar
  81. Karimov KM, Al’-Zhadi RA (2001) Structure of Earth’s crust and upper mantle in Kazakhstan according to magnetotelluric soundings. Evero, Almati, Kazakhstan, 157 p (in Russia) (Строение земной коры и верхней мантии казахСтана по данным магнитотеллуричеСких зондирований. каримов км, аль-Жади ра – алматы: Эверо (2001 – 157 cтр)Google Scholar
  82. Korja T, Hjelt S-E (1993) Electromagnetic studies in the Fennoscandian Shield – electrical conductivity of Precambrian crust. Phys Earth Planet Int 81(1–4):107–138Google Scholar
  83. Korja T, Tuisku P, Pernu T, Karhu J (1996) Lapland Granulite Belt – implications for properties and evolution of deep continental crust. Terra Nova 8:48–58Google Scholar
  84. Korja T, Engels M, Zhamaletdinov AA, Kovtun AA, Palshin NA, Smirnov MYu, Tokarev A, Asming VE, Vanyan LL, Vardaniants IL, the BEAR Working Group (2002) Crustal conductivity in Fennoscandia – a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54:535–558Google Scholar
  85. Korja A, Lahtinen R, Nironen M (2006) The Svecofennian orogen: a collage of microcontinents and island arcs. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoirs 32Google Scholar
  86. Korja T, Kaikkonen P, Lahti I, Pedersen LB, Smirnov M, Vaittinen K, BEAR WG, EMTESZ WG (2006a) Electrical conductivity of upper mantle in Fennoscandia. In: Kukkonen IT, Eklund O, Korja A, Korja T, Pesonen LJ, Poutanen M 2006 (eds) Lithosphere 2006 – fourth symposium on the structure, composition and evolution of the lithosphere in Finland. Programme and Extended Abstracts, Espoo, Finland, November 9–10, 2006 Institute of Seismology, University of Helsinki, Report S-46Google Scholar
  87. Korja T, Smirnov M, Pedersen LB (2006b) Electrical conductivity of the lithosphere under the Scandinavian Caledonides, Jämtland, Sweden IAGA WG 1.2 on Electromagnetic Induction in the Earth. S9-E1 in Extended Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006, 6 pp http://www.ub.edu/18emiw/S9- %20Expanded%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  88. Korja T, Smirnov M, Pedersen LB (2006c) Electromagnetic Mini Array (EMMA) project and upper mantle conductivity in Fennoscandia. IAGA WG 1.2 on Electromagnetic Induction in the Earth S9-E2 in Extended Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006, 6 pp http://www.ub.edu/18emiw/S9-%20Expanded%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  89. Korsman K, Korja T, Pajunen M, Virransalo P, the GGT/SVEKA Working Group (1999) The GGT/SVEKA transect: structure and evolution of the continental crust in the Palaeoproterozoic Svecofennian Orogen in Finland. Int Geol Rev 41(4):287–333Google Scholar
  90. Kováčiková S, Červ V, Praus O (2005a) Modelling of the conductance distribution at the eastern margin of the European Hercynides. Stud Geophys Geod 49:403–421Google Scholar
  91. Kováčiková S, Červ V, Ladanivsky B, Logvinov I, Praus O, Tarasov V (2005b) Modelling of conductance within the west and Ukrainian Carpathians. Publs Inst Geophys Pol Acad Sci C-95(386):29–35Google Scholar
  92. Lagios E, Galanopoulos D, Hobbs BA, Dawes GJK (1998) Two dimensional magnetotelluric modelling of the Kos Island geothermal region (Greece). Tectonophysics 287:157–172Google Scholar
  93. Lahti I, Korja T, Kaikkonen P, Vaittinen K, BEAR Working Group (2005) Decomposition analysis of the BEAR magnetotelluric data: Implications for the upper mantle conductivity in the Fennoscandian Shield. Geophys J Int 163:900–914CrossRefGoogle Scholar
  94. Lahti I, Korja T, Pedersen LB, BEAR Working Group (2007) Lithospheric conductivity along the GGT/SVEKA transect in the central Fennoscandian Shield. Submitted to GJIGoogle Scholar
  95. Ledo J, Jones AG (2005) Upper mantle temperature determined from combining mineral composition, electrical conductivity laboratory studies and magnetotelluric field observations: Application to the intermontane belt, Northern Canadian Cordillera. Earth Planet Sci Lett 236:258–268Google Scholar
  96. Ledo J, Ayala C, Pous J, Queralt P, Marcuello A, Muńoz J (2000) New geophysical constraints on the deep structure of the Pyrenees. Geophys Res Lett 27(7):1037–1040Google Scholar
  97. Logvinov IM (2002) Applying the horizontal spatial gradient method for the deep conductivity estimations in the Ukraine. Acta Geophys Pol 50(4):568–573Google Scholar
  98. Martí A, Queralt P, Ledo J, Arango C, Galindo-Zaldívar J, Roca E, Marcuello A (2004a) Preliminary results from a new MT survey in the Internal Zones of the Betic Chain (Spain). IAGA WG 12 on Electromagnetic Induction in the Earth S1-P20 in Proceedings of the 17th Workshop, Hyderabad, India, October 18–23, 2004, 4 pp http://www.emindia2004.org. Cited 15 Jan 2007Google Scholar
  99. Martí A, Queralt P, Roca E (2004b) Geoelectric dimensionality in complex geological areas: application to the Spanish Betic Chain. Geophysical Journal International 157:961–974Google Scholar
  100. Martinec Z, Wolf D (2005) Inverting the Fennoscandian relaxation-time spectrum in terms of an axisymmetric viscosity distribution with a lithospheric root. J Geodynamics 39:143–163Google Scholar
  101. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337Google Scholar
  102. Monteiro Santos FA, Pous J, Almeida EP, Queralt P, Marcuello A, Mati H, Mendes Victor LA (1999) Magnetotelluric survey of the electrical conductivity of the crust across the Ossa Morena Zone and South Portuguese Zone suture. Tectonophysics 313:449–462Google Scholar
  103. Monteiro Santos FA, Mateus A, Almeida EP, Pous J, Mendes-Victor LA (2002) Are some of the deep crustal conductive features found in SW Iberia caused by graphite? Earth Planet Sci Lett 201:353–367Google Scholar
  104. Monteiro Santos FA, Soares A, Nolasco Rodrigues H, Luzio R., Palshin N, the ISO-3D team (2003) Lithosphere conductivity structure using the CAM-1(Lisbon-Madeira) submarine cable. Geophys J Int 155:591–600Google Scholar
  105. Muńoz G, Heise W, Paz C, Almeida E, Monteiro Santos F, Pous J (2005) New magnetotelluric data through the boundary between the Ossa Morena and Centroiberian Zones. Geologica Acta 3(3):215–223Google Scholar
  106. Muńoz G, Pous J, Monteiro-Santos F, Pina-Almeida E, Mateus A, Heise W (2006) 3D geoelectrical image of the SW Iberian Peninsula. IAGA WG 1.2 on Electromagnetic Induction in the Earth. S9-19 in Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006. http://www.ub.edu/18emiw/S9-%20Short%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  107. Mutanen T, Huhma H (2003) The 3.5 Ga Siurua trondhjemite gneiss in the Archean Pudasjärvi Granulite Belt, northern Finland. Bull Geol Soc Finland 75:51–68Google Scholar
  108. Nover G (2005) Electrical properties of crustal and mantle rocks – a review of laboratory measurements and their explanation. Surveys Geophysics 26:593–651Google Scholar
  109. Pajunpää K, Olafsdottir B, Lahti I, Korja T, the BEAR Working Group (2002) Crustal conductivity anomalies in central Sweden and Southwestern Finland. Geophys J Int 150:695–705Google Scholar
  110. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res, 108, B2, 2065, doi: 10.1029/2002JB001757Google Scholar
  111. Plant JA, Whittaker A, Demetriades A, De Vivo B, Lexa J (2003) The Geological and Tectonic Framework of Europe. In: Salminen R (ed) Geochemical Atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, Espoo, Finland. http://www.gtk.fi/publ/foregsatlas/article.php?id=4. Cited 28 May 2007Google Scholar
  112. Pous J, Ayala C, Ledo J, Marcuello A, Sabat F (1995a) 3D modeling of magnetotelluric and gravity data of Mallorca island (Western Mediterranean). Geophys Res Lett 22(6):735–738Google Scholar
  113. Pous J, Ledo J Marcuello A, Daignie`res M (1995b) Electrical resistivity model of the crust and upper mantle from a magnetotelluric survey through the central Pyrenees. Geophys J Int 121:750–762Google Scholar
  114. Pous J, Muńoz JA, Ledo JJ, Liesa M (1995c) Partial melting of subducted continental lower crust in the Pyrenees. J Geol Soc (London) 152:217–220Google Scholar
  115. Pous J, Queralt P, Ledo JJ, Roca E (1999) A high electrical conductive zone at lower crustal depth beneath the Betic Chain (Spain). Earth Planet Sci Lett 167:35–45Google Scholar
  116. Pous J, Queralt P, Marcuello A (2001) Magnetotelluric signature of the western Cantabrian Mountains. Geophys Res Lett 28(9):1795–1798Google Scholar
  117. Pous J, Muńoz G, Heise W, Carles Melgarejo J, Quesada C (2004) Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite. Earth Planet Sci Lett 217:435–450Google Scholar
  118. Praus O, Pěčová J, Petr V, Babuska V, Plomerova J (1990) Magnetotelluric and seismological determination of the lithosphere–asthenosphere transition in Central Europe. Phys Earth Planet Int 60:212–228Google Scholar
  119. Pushkarev P, Jóźwiak W, Ladanyvskyy B, Logvinov IM, Semenov VYu, Vozar J, the Experimental Team of CEMES (2006) On the mantle geoelectrical structure in the vicinity of the Trans-European suture zone in Central Europe, CEMES project. IAGA WG 1.2 on Electromagnetic Induction in the Earth S9-5 in Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006 http://www.ub.edu/18emiw/S9-%20Short%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  120. Rasmussen TM (1988) Magnetotellurics in southwestern Sweden: evidence for electrical anisotropy in the lower crust? J Geophys Res 93:7897–7907CrossRefGoogle Scholar
  121. Reitmayr G (1974) Elektromagnetische Induktion im Erdinnern studiert am Rheingraben. Inaugural Dissertation, University of München, GermanyGoogle Scholar
  122. Richards ML, Schmucker U, Steveling E (1982) Entzerrung der Impedanzkurven von magnetotellurischen Messungen in der Schwäbischen Alb. 8. Kolloquium “Electromagnetische Tiefensondierung”, Neustadt/Weinstrasse 1982, Deutsche Geophysikalische Gesellschaft eV, pp 27–40Google Scholar
  123. Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: influence of melt composition. J Geophys Res 104:7055–7065Google Scholar
  124. Rokityansky II, Ingerov AI (1999) Conductive structure of Ukrainian Carpathians from EM observations. Phys Chem Earth (A) 24(9):849–852Google Scholar
  125. Scheube HG (1965) Komponentenverfahren: erste Anwendung auf die Norddeutsche Leifähigkeitsanomalie. Kolloquium “Electromagnetische Tiefensondierung”, Goslar (1965), Deutsche Geophysikalische Gesellschaft eV, pp 174–191Google Scholar
  126. Schulte L (1980) Magnetotelllurik-Messungen entlang eines Profils von der Eifel bis in die Pfalz. Kolloquium “Electromagnetische Tiefenforschung”, Berlin/Lichtenrade (1980), Deutsche Geophysikalische Gesellschaft eV, pp 39–46Google Scholar
  127. Schwarz G, Haak V (1980) Magnetotellurik in der Toskana/Italien. Kolloquium “Electromagnetische Tiefenforschung”, Berlin/Lichtenrade (1980), Deutsche Geophysikalische Gesellschaft eV, pp 53–59Google Scholar
  128. Semenov VYu, Jóźwiak W (2005) Estimation of the upper mantle electric conductance at the polish margin of the East European platform. Izvestiya, Phys Solid Earth 41(4):326–332Google Scholar
  129. Semenov VYu, Jóźwiak W (2006) Lateral variations of the mid-mantle conductance beneath Europe. Tectonophysics 416:279–288Google Scholar
  130. Semenov VYu, Jankowski J, Jóźwiak W (2002) New evidence of the anomalously conductive mantle beneath the Tornquist-Teisseyre zone in Poland. Acta Geophysica Polonica 50(4):517–526Google Scholar
  131. Shneyer VS, Tromifov IL, Abramov YuM, Zhdanov MS, Machinin VA, Shabelyansky SV (1991) Some results of gradient electromagnetic soundings in Doldrums Mid-Atlantic Ridge fracture. Phys Earth Planet Int 66:259–264Google Scholar
  132. Shomali ZH, Roberts RG, TOR Working Group (2002) Non-linear body wave teleseismic tomography along the TOR array. Geophys J Int 148:562–574Google Scholar
  133. Shomali ZH, Roberts RG, Pedersen LB, TOR Working Group (2006) Lithospheric structure of the Tornquist Zone resolved by nonlinear P and S teleseismic tomography along the TOR array. Tectonophysics 416:133–149Google Scholar
  134. Simpson F (2002) A comparison of electromagnetic distortion and resolution of upper mantle conductivities beneath continental Europe and the Mediterranean using islands as windows. Phys Earth Planet Int 129:117–130Google Scholar
  135. Smirnov M, Pedersen LB (2006) Electrical conductivity across the Sorgenfrei-Tornquist Zone. IAGA WG 1.2 on Electromagnetic Induction in the Earth. S8–10 in Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006, 1 pp http://www.ub.es/18emiw/S8-%20Short%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  136. Smirnov MYu, Pedersen LB (2007) Magnetotelluric measurements across Sorgenfrei-Tornquist-zone in southern Sweden and Denmark. Geophys J Int (submitted)Google Scholar
  137. Stanica M, Stanica D, Marin-Furnic C (1999) The placement of the Trans-European Suture Zone on the Romanian territory by electromagnetic arguments. Earth Planets Space 51:1073–1078Google Scholar
  138. Stephenson RA, Yegorova T, Brunet M-F, Stovba S, Wilson M, Starostenko V, Saintot A, Kusznir N (2006) Late Palaeozoic intra- and pericratonic basins on the East European Craton and its margins. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, Geological Society, London, Memoirs 32Google Scholar
  139. Steveling E (1973) Erdmagnetische Tiefensondierung mit Variationen und Pulsationen im Einflussbereich der Norddeutschen Leitfähig-keitsanomalie. Dissertation, University of Göttingen, GermanyGoogle Scholar
  140. Steveling E (1984) Magnetotellurische Langseitregistrierungen in Deppoldshausen bei Göttingen. 10. Kolloquium “Electromagnetische Tiefenforschung”, Grafrath/Oberbay (1984), Deutsche Geophysikalische Gesellschaft eV, pp 115–126 Google Scholar
  141. Szarka L, Ádám A, Novák A, Kiss J, Madarasi A, Prácser E, Varga G (2004) Magnetotelluric images completed with gravity, magnetics and seismics from SW-Hungary. IAGA WG 1.2 on Electromagnetic Induction in the Earth, Proceedings of the 17th Workshop, Hyderabad, India, October 18–23, 2004, S1-O05, http://www.emindia2004.org; MTnet: www.geophysics.dias.ie/mtnet/. Cited 15 Jan 2007Google Scholar
  142. Tank SB, Honkura Y, Ogawa Y, Matsushima M, Oshiman N, Tuncer MK, Celik C, Tolak E, Isikara AM (2005) Magnetotelluric imaging of the fault rupture area of the 1999 Izmit (Turkey) earthquake. Phys Earth Planet Int 150:213–225Google Scholar
  143. Tarits P, Hautot S, Perrier F (2004) Water in the mantle: results from electrical conductivity beneath the French Alps. Geophys Res Lett 31:L06612, doi: 10.1029/2003GL019277Google Scholar
  144. Teisseyre W (1903) Der Paleozoische Horst von Podolien und die ihn umgehenden Senkugsfelder. Beiträge zur Paleontologic und Geologie Österreichs–Ungarn und d. Orients, XVGoogle Scholar
  145. Tezkan B (1994) On the detectability of a highly conductive layer in the upper mantle beneath the Black Forest crystalline using magnetotelluric methods. Geophys J Int 118:185–200Google Scholar
  146. Turkoglu E, Unsworth M, Caglar I, Tuncer V, Avsar U, Tank B (2006) Magnetotelluric imaging of the Eurasian-Arabian collision in Eastern Anatolia. IAGA WG 1.2 on Electromagnetic Induction in the Earth. S9-E5 in Extended Abstracts of the 18th Workshop, El Vendrell, Spain, September 17–23, 2006, 6 pp http://www.ub.edu/18emiw/S9-%20Expanded%20Abstracts.pdf. Cited 15 Jan 2007Google Scholar
  147. Törnquist AJH (1908) Die Feststellung des Südwestrandes des Baltisch Russischen Schildes. Schriften der Phys Okön Ges, Königsberg, p XLIXGoogle Scholar
  148. Vaittinen K, Lahti I, Korja T, Kaikkonen P (2006) Crustal conductivity of the central Fennoscandian Shield revealed by 2D inversion of GGT/SVEKA and MTFIRE datasets. In: Kukkonen IT, Eklund O, Korja A, Korja T, Pesonen LJ, Poutanen M (eds) Lithosphere 2006 – fourth symposium on the structure, composition and evolution of the lithosphere in Finland. Programme and Extended Abstracts, Espoo, Finland, November 9–10, 2006. Institute of Seismology, University of Helsinki, Report S-46Google Scholar
  149. Viljakainen M (1996) A magnetotelluric study on the electrical conductivity of the upper mantle in the Archaean Kuhmo region, Unpublished MSc thesis, Department of Geophysics, University of Oulu, Oulu, Finland, 66 + 10 pp (in Finnish)Google Scholar
  150. Wannamaker P (2005) Anisotropy versus heterogeneity in continental solid Earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surveys in Geophysics 26:733–765Google Scholar
  151. Wagenitz V (1982) Tellurisch-magnetotellurische Untersuchungen zur Bestimmung der elektrischen Keitfähigkeit in der oberen Kruste im Bereich der Anomalie von Bramsche und des Niedersächsischen Tektogens. Dissertation, University of Münster, GermanyGoogle Scholar
  152. Weidelt P (1970) Die Umkehraufgabe der erdmagnetischen Tiefensondierung fur horizontal geschichtete Leiter. Dissertation, University of Göttingen, GermanyGoogle Scholar
  153. Wessel P, Smith WHF (1998) New, Improved Version of the Generic Mapping Tools Released. EOS Trans AGU 79:579Google Scholar
  154. Wybraniec SJ, Jankowski T, Ernst T, Pěčová J, Praus O (1999) A new method for presentation of induction vector distribution in Europe. Acta Geophys Pol 47(3):323–334Google Scholar
  155. Xu Y, Shankland TJ, Poe BT (2000) Laboratory-based electrical conductivity in the Earth’s mantle. J Geophys Res 105(B12):27865–27875Google Scholar
  156. Zhdanov MS, Golubev NG, Varentsov IM, Abramova LM, Shneer VS, Berdichevsky MN, Zhdanova ON, Gordienko VV, Kulik SN, Bilinsky AI (1986) 2-D model fitting of a geomagnetic anomaly in the Soviet Carpathians. Ann Geophysicae 4(B3):335–342Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Physical Sciences, Division of GeophysicsUniversity of OuluOuluFinland

Personalised recommendations