Surveys in Geophysics

, Volume 26, Issue 4, pp 481–504 | Cite as

Shallow Seismic Velocity Structure of the Betic Cordillera (Southern Spain) from Modelling of Rayleigh Wave Dispersion

  • M. Chourak
  • V. Corchete
  • J. Badal
  • F. Gómez
  • J. Serón


A detailed dispersion analysis of Rayleigh waves generated by local earthquakes and occasionally by blasts that occurred in southern Spain, was undertaken to obtain the shear-wave velocity structure of the region at shallow depth. Our database includes seismograms generated by 35 seismic events that were recorded by 15 single-component short-period stations from 1990 to 1995. All these events have focal depths less than 10 km and body-wave magnitudes between 3.0 and 4.0, and they were all recorded at distances between 40 and 300 km from the epicentre. We analysed a total of 90 source-station Rayleigh-wave paths. The collected data were processed by standard digital filtering techniques to obtain Rayleigh-wave group-velocity dispersion measurements. The path-averaged group velocities vary from 1.12 to 2.25 km/s within the 1.0-6.0 s period interval. Then, using a stochastic inversion approach we obtained 1-D shear-wave velocity–depth models across the study area, which were resolved to a depth of circa 5 km. The inverted shear-wave velocities range approximately between 1.0 and 3.8 km/s with a standard deviation range of 0.05–0.16 km/s, and show significant variations from region to region. These results were combined to produce 3-D images via volumetric modelling and data visualization. We present images that show different shear velocity patterns for the Betic Cordillera. Looking at the velocity distribution at various depths and at vertical sections, we discuss of the study area in terms of subsurface structure and S-wave velocity distribution (low velocity channels, basement depth, etc.) at very shallow depths (0–5 km). Our results characterize the region sufficiently and lead to a correlation of shear-wave velocity with the different geological units features.


3-D images Betic Cordillera dispersion inversion Rayleigh waves seismic velocity structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K. and Richards, P. G.: 1980, Quantitative Seismology: Theory and Methods, W.H. Freeman, San FranciscoGoogle Scholar
  2. Aldaya, F. and García-Dueñas, V.: 1971, Mapa Geológico de España, Almería-Garrucha, 84–85, p. 23, IGME, MadridGoogle Scholar
  3. Alguacil, G., Guirao, J. M., Gómez, F., Vidal, F., and de Miguel, F.: 1990. Red Sísmica de Andalucía: A digital PC-based seismic network, Cahiers du Centre Européen de Géodynamique et de Séismologie, 1, 19–27Google Scholar
  4. Ai-Khatib, H. H, Mitchell, B. J. 1991Upper Mantle Anelasticity and Tectonic Evolution of the Western United States from Surface Wave AttenuationJ. Geophys. Res.961812918146Google Scholar
  5. Aström, K, Lund, C. 1993Explosion-generated Short-period Surface Wave Dispersion and Noise Studies along linear seismic arrays in southern SwedenGeophys. J. Int.114103115Google Scholar
  6. Badal, J., Corchete, V., Payo, G., Canas, J. A., Pujades, L, Serón, F. J. 1990Processing and Inversion of Long-period Surface-wave Data collected in the Iberian PeninsulaGeophys. J. Int.100193202Google Scholar
  7. Badal, J., Corchete, V., Payo, G., Serón, F. J., Canas, J. A, Pujades, L. 1992Deep Structure of the Iberian Peninsula Determined by Rayleigh Wave Velocity InversionGeophys. J. Int.1087188Google Scholar
  8. Badal, J., Corchete, V., Payo, G., Pujades, L, Canas, J. A. 1996Imaging of Shear Wave Velocity Structure Beneath IberiaGeophys. J. Int.124591611Google Scholar
  9. Badal, J., Sabadell, F. J, Serón, F. J. 2000An Attempt at 3-D Imaging of a Small Domain (Almeria, southern Spain) using a POCS AlgorithmPhys. Earth Planet. Inter.1226777Google Scholar
  10. Badal, J., Dutta, U., Serón, F, Biswas, N. 2004Three Dimensional Imaging of Shear wave Velocity in the Uppermost 30 m of the Soil Column in Anchorage, AlaskaGeophys. J. Int.158983997CrossRefGoogle Scholar
  11. Banda, E., Gallart, E., Garcia-Dueñas, V., Dañobeitia, J. J, Makris, J. 1993Lateral Variation of the Crust in Iberian Peninsula: New Evidence from the Betic CordilleraTectonophysics22114CrossRefGoogle Scholar
  12. Cara, M. 1973Filtering of Dispersed WavetrainsGeophys. J. R. astr. Soc.336580Google Scholar
  13. Casas, A, Carbfi, A 1990Deep Structure of the Betic Cordillera Derived from the Interpretation of a Complete Bouguer Anomaly MapJ. Geodyn.12137147CrossRefGoogle Scholar
  14. Chourak, M., Badal, J., Corchete, V, Serón, F. J. 2001A Survey of the Shallow Structure Beneath the Alboran Sea using Rg-Waves and 3D ImagingTectonophysics335255273CrossRefGoogle Scholar
  15. Chourak, M., Corchete, V., Badal, J., Serón, F. J, Gómez, F. 2003Imaging of the Near-Surface Shear-wave Velocity Structure of the Granada Basin (Southern Spain)Bull. Seism. Soc. Am.93430442Google Scholar
  16. Corchete, V., Badal, J., Serón, F. J, Soria, A. 1995Tomographic Images of the Iberian Subcrustal Lithosphere and AsthenosphereJ. Geophys. Res.1002413324146CrossRefGoogle Scholar
  17. Dañobeitia, J. J., Sallares, V, Gallart, J. 1998Local Earthquake Seismic Tomography in the Betic Cordillera (South Spain)Earth Planet. Sci. Lett.160225329Google Scholar
  18. Dziewonski, A. M., Bloch, S, Landisman, M. 1969A Technique for the Analysis of Transient Seismic SignalsBull. Seism. Soc. Am.59427444Google Scholar
  19. Dziewonski, A. M, Hales, A. L. 1972Numerical Analysis of Dispersed Seismic WavesMeth. Compt. Phys.113985Google Scholar
  20. Dziewonski, A. M., Mills, J, Bloch, S. 1972Residual Dispersion Measurement; A new method of surface analysisBull. Seism. Soc. Am.62129139Google Scholar
  21. Galindo-Zaldívar, J., Jabaloy, A., González-Lodeiro, F, Aldaya, F. 1997Crustal Structure of the Central Sector of the Betic Cordillera (SE Spain)Tectonics161837Google Scholar
  22. García-Dueñas, V., Banda, E., Torné, M., Córdoba, D, Esci-Béticas, Working Groups 1994A Deep Seismic Reflection Survey across the Betic Chain (South Spain): First resultsTectonophysics2327789Google Scholar
  23. Goforth, T. T., Bonner, J. L. 1995Characteristics of Rg Waves Recorded from Quarry Blasts in Central TexasBull. Seism. Soc. Am.8512321235Google Scholar
  24. Gurría, E., Mézcua, J, Blanco, M. J. 1997Crustal and Upper Mantle Velocity Structure of Southern Iberia, the Sea of Alboran and the Gibraltar Arc Determined by Local Earthquarke TomographyAnn. Geof.1123132Google Scholar
  25. Gurría E. and Mézcua, J. 2000Seismic Tomography of the Crust and Lithospheric Mantle in the Betic Cordillera and Alboran SeaTectonophysics32999119Google Scholar
  26. Hatzfeld, D. and Bensari, D.: 1977, Grands profiles sismiques dans la région de L’arc de Gibraltar, Bull. Soc. Géol. France, 7, XIX, 4, 749–756Google Scholar
  27. Herrmann, R. B. 1973Some Aspects of Band-Pass Filtering of Surface WavesBull Seism. Soc. Am.63663671Google Scholar
  28. Jacobsen, B. H., Mosegaard, K, Sibani, P. 1996Inverse Methods, Lecture Notes in Earth Sciences SeriesSpringer-VerlagBerlinGoogle Scholar
  29. Kafka, A. L. 1990Rg as a Depth Discriminant for Earthquakes and Explosions: A Case Study in New EnglandBull. Seism. Soc. Am.80373394Google Scholar
  30. Kim, W. Y., Simpson, D. W, Richards, P. G. 1994High-Frequency Spectra of Regional Phases from Earthquakes and Chemical ExplosionsBull. Seism. Soc. Am.8413651386Google Scholar
  31. Kocaoglu, A. H., Long, L. T. 1993Tomographic Inversion of Rg Wave Group Velocities for Regional Near-surface Velocity StructureJ. Geophys. Res.9865796587Google Scholar
  32. Lamotte, F., Andrieux, D. J, Guézou, J. C. 1991Cinématique des chevauchements néogenes dans I’arc bético-rifain, Discusion sur les modéles géodynamiquesBulletin de la Société Géologique de France162611626Google Scholar
  33. Macbeth, C. D., Burton, P. W. 1985Upper Crustal Shear Velocity Models from Higher Mode Rayleigh Wave Dispersion in ScotlandGeophys. J. R. astr. Soc.83519539Google Scholar
  34. Macbeth, C. D., Burton, P. W. 1987Single-Station Attenuation Measurements of High-Frequency Rayleigh Waves in ScotlandGeophys. J. R. astr. Soc.89757797Google Scholar
  35. Macbeth, C. D., Panza, G. F. 1989Modal Synthesis of High-Frequency Waves in ScotlandGeophys. J.96353364Google Scholar
  36. Malagnini, L. 1996Velocity and Attenuation Structure of Very Shallow Soils: Evidence for a Frequency-Dependent QBull. Seism. Soc. Am.8614711486Google Scholar
  37. Malagnini, L., Herrmann, R. B., Biella, G, Franco, R. 1995Rayleigh Waves in Quaternary Alluvium from Explosive Sources: Determination of Shear-Wave Velocity and Q StructureBull. Seism. Soc. Am.85900922Google Scholar
  38. McEwan, D. J., Snelson, C. M., Tkalcic, H., and Rodgas, A.: 2003, Initial Results from the Las Vegas Valley Broadband Array based on Differential Travel Time Residuals and Interstation Phase Velocities, EOS Trans., AGU, 84, 46, Abstract S11 D-0323Google Scholar
  39. McEwan, D. J., Snelson, C. M, Rodgas, A. 2004Analysis of Rg Wave Dispersion for Shear Velocity Structure in Northeast Las Vegas Valley, Nevada, using Regional Data Collected by the Las Vegas Valley Broadband ArraySeismol. Res. Lett.74257Google Scholar
  40. Menke, W. 1984Geophysical Data Analysis: Discrete Inverse TheoryAcademic Press, Inc.Orlando, FloridaGoogle Scholar
  41. Mokhtar, T. A., Herrmann, R. B, Russell, D. R. 1988Seismic Velocity and Q Models for the Shallow Structure of the Arabian Shield from Short-period Rayleigh wavesGeophysics5313791387CrossRefGoogle Scholar
  42. Morales, J., Vidal, F., Miguel, F., Alguacil, G., Posadas, A. M., Ibáñez, J. M., Guzmán, A, Guirao, J. M. 1990Basement Structure of the Granada Basin, Betic Cordilleras, Southern SpainTectonophysics177337348CrossRefGoogle Scholar
  43. Morales, J., Serrano, I., Jabaloy, A., Galdeano-Zaldívar, J., Zhao, D., Torcal, F., Vidal, F, GonzálezLodeiro, F. 1999Active Continental Subduction Beneath the Betic Cordillera and Alboran SeaGeology27725738CrossRefGoogle Scholar
  44. Navarro, M., Corchete, V., Badal, J., Canas, J. A., Pujades, L, Vidal, F. 1997Inversion of Rg waveforms in southern SpainBull. Seismol. Soc. Am.87847865Google Scholar
  45. Pedersen, H. and Campillo, M.: 1991, Modeling of Rg Waves in Finland and Shear Wave Attenuation in the Upper Crust, Proc. Sixth Meeting of the European Union of Geosciences, Strasbourg, France, Vol. 3Google Scholar
  46. Platt, J. P., Berhmann, J. H., Martinez, J. M, Vissers, R. L. M. 1984A Zone of Mylonite and Related Ductile Deformation Beneath the Alpujárride Nappe complex, Betic CordilleraGeologischen Rundschau73773785Google Scholar
  47. Russell, D. R., Herrmann, R. B, Hwang, H. J. 1988Application of Frequency Variable Filters to Surface Wave Amplitude AnalysisBull. Seism. Soc. Am.78339354Google Scholar
  48. Sabadell, F. J., Serón, F. J, Badal, J. 1997A Proper Methodology aimed at Surface Wave TomographyAnn. Geophys.40195207Google Scholar
  49. Saikia, C. K. 1992Numerical Study of Quarry Generated R g as a Discriminant for Earthquakes and Explosions: Modeling of Rg in Southwestern New EnglandJ. Geophys. Res.971105711072CrossRefGoogle Scholar
  50. Saikia, C. K., Kafka, A. L., Gnewuch, S. C, McTigue, J. W. 1990Shear Velocity and Intrinsic Q Structure of the Shallow Crust in Southeastern New England from R g Wave DispersionJ. Geophys. Res.9585278541Google Scholar
  51. Sanz de Galdeano, C. 1997La Zona Interna Bético-RifeñaUniversidad de GranadaSpain318 ppGoogle Scholar
  52. Sarrate, J., Canas, J. A., Pujades, L., Badal, J., Corchete, V, Payo, G. 1993Shallow Structure of part of Northwestern Iberia from Short-period Rayleigh-Wave ObservationsTectonophysics22195105CrossRefGoogle Scholar
  53. Serón, F. J., Sabadell, F. J., Badal, J, Martin, J. M. 1999Modelling Techniques for Volumetric Reconstruction of Earth structuresPhys. Chem. Earth (A)24261268Google Scholar
  54. Serón, F. J., Badal, J. I, Sabadell, F. J. 2001Spatial prediction Procedures for Regionalization and 3-D Imaging of Earth StructuresPhys. Earth Planet. Inter.123149168Google Scholar
  55. Serrano, I., Morales, J., Zhao, D., Torcal, F, Vidal, F. 1998P-wave Tomographic Images in the Central Betics-Alborn Sea (South Spain) using Local Earthquakes: Contribution for a Continental CollisionGeophys. Res. Lett.2540314034CrossRefGoogle Scholar
  56. Serrano, I., Zhao, D, Morales, J. 20023D Crustal Structure of Extensional Granada Basin in the convergent boundary between the Eurasian and African platesTectonophysics3446179CrossRefGoogle Scholar
  57. Szelwis, R. and Behle, A.: 1984, Shallow Shear-Wave Velocity Estimation From Multi-modal Rayleigh Waves, in: Danbom, S. H. and Domenico, S. N. (eds.): Shear-Wave Exploration, Geophysical Development Series, Society of Exploration Geophysicists, Vol. 1, pp. 214–226.Google Scholar
  58. Tarantola, A. 1987Inverse Problem Theory, Methods for Data Fitting and Model Parameter EstimationElsevierAmsterdam,613 ppGoogle Scholar
  59. Tejedor, J. M., Garcia, O. 1993Funciones de transferencia de las estaciones de la Red Sismica NacionalInstituto Geográfico NacionalMadridGoogle Scholar
  60. Torné, M. and Banda, E.: 1992, Crustal Thinning from the Betic Cordillera to the Alboran Sea, in Maldonado, A. and Comas, M.C. (eds.): Alboran Sea, Geomar. Lett., 12, pp. 76–81Google Scholar
  61. Tomé, M., Banda, E., Garcia-Dueñas, V, Balanyá, J. C. 1992Mantle-lithosphere bodies in the Alboran crystalline domain (Ronda peridotite, Betic–Rif orogenic belt)Earth Planet Sci. Lett.110163171Google Scholar
  62. Vegas, R., Meldialdea, T., Suriñach, E, Vázquez, J. T. 1994La deformación intraplaca del centro de España y la interpretación de los perfiles profundos de sismica de reflexión en las Cordilleras BéticasGeogaceta15124126Google Scholar
  63. Watts, A. B., Platt, J. P, Buhl, P. 1993Tectonic evolution of the Alboran Sea basinBasin Res.5153177Google Scholar
  64. Wildi, W. 1983La chaîne Tello-Rifaine (Algerie, Maroc, Tunisie): estructure, stratigraphie et évolution du Trias au MioceneRev. Géol. Dyn. Geogr. Phys.24201297Google Scholar
  65. Yao, P. C., Dorman, J. 1992Short-Period Surface-Wave Dispersion and Shallow Crustal Structure of Central and Eastern TennesseeBull. Seism. Soc. Am.82962979Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M. Chourak
    • 1
  • V. Corchete
    • 1
  • J. Badal
    • 2
  • F. Gómez
    • 3
  • J. Serón
    • 3
  1. 1.Applied Physics, Higher Polytechnic SchoolUniversity of AlmeríaCañada de San UrbanoSpain
  2. 2.Physics of the Earth, Sciences BUniversity of ZaragozaZaragozaSpain
  3. 3.Computation Sciences, Higher Polytechnic CenterUniversity of ZaragozaMaria de Luna 3ZaragozaSpain

Personalised recommendations