Surveys in Geophysics

, Volume 26, Issue 1–3, pp 281–305 | Cite as

Spatial and Temporal Cusp Structures Observed by Multiple Spacecraft and Ground Based Observations

  • K. J. Trattner
  • S. A. Fuselier
  • T. K. Yeoman
  • C. Carlson
  • W. K. Peterson
  • A. Korth
  • H. Reme
  • J. A. Sauvaud
  • N. Dubouloz


Downward precipitating ions in the cusp regularly exhibit sudden changes in ion energy distributions, forming distinctive structures that can be used to study the temporal/spatial nature of reconnection at the magnetopause. When observed simultaneously with the Polar, FAST, and Interball satellites, such cusp structures revealed remarkably similar features. These similar features could be observed for up to several hours during stable solar wind conditions. Their similarities led to the conclusion that large-scale cusp structures are spatial structures related to global ionospheric convection patterns created by magnetic merging and not the result of temporal variations in reconnection parameters. The launch of the Cluster fleet allows cusp structures to be studied in great detail and during changing solar wind conditions using three spacecraft with identical plasma and field instrumentation. In addition, Cluster cusp measurements are linked with ionospheric convection cells by combining the satellite observations with SuperDARN radar observations that are used to derive the convection patterns in the ionosphere. The combination of satellite observations with ground-based observations during variable solar wind conditions shows that large-scale cusp structures can be either spatial or temporal. Cusp structures can be described as spatial features observed by satellites crossing into spatially separated flux tubes. Cusp structures can also be observed as poleward-traveling (temporal) features within the same convection cell, most probably caused by variations in the reconnection rate at the magnetopause.


cusp geometry cusp structures precipitating ions 



Applied Physics Laboratory, Johns Hopkins University


Defense Meterological Satellite Program


magnetic local time


Fast Auroral SnapshoT satellite




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carlson, C. W., McFadden, J. P., Turin, P., Curtis, D. W., Magoncelli, A. 2001The Electron and Ion Plasma Experiments for FASTSpace Sci. Rev.981CrossRefGoogle Scholar
  2. Cowley, S. W. H. 1982The Cause of Convection in the Earth’s Magnetosphere: A Review of Developments During the IMSem Rev. Geophys. Res.20531Google Scholar
  3. Cowley, S. W. H., Freeman, M.P., Lockwood, M., Smith, M.F. 1991‘The Ionospheric Signatures of Flux Transfer Events’Barron, C.I eds. CLUSTER: Dayside Polar CuspEuropean Space Agency Spec. Publ.ESA105SP-330Google Scholar
  4. Cowley, S. W. H., Lockwood, M. 1992Excitation and Decay of Solar Driven Flows in the Magnetosphere–Ionosphere SystemAnn. Geophys.10103Google Scholar
  5. Dubouloz, N., Berthelier, J. -J., Malingre, M., Girard, L., Galperin, Y., Covinhes, J., Chugunin, D., Godefroy, M., Gogly, G., Guérin, C., Illiano, J. -M., Kossa, P., Leblanc, F., Legoff, F., Mularchik, T., Paris, J., Stzepourginski, W., Vivat, F., Zinin, L. 1998Thermal Ion Measurements on Board Interball Aurora Probe by the Hyperboloid ExperimentAnn. Geophys.161070Google Scholar
  6. Dungey, J. W. 1961Interplanetary Magnetic Field and Auroral ZonesPhys. Rev. Lett.647CrossRefGoogle Scholar
  7. Escoubet, C. P., Smith, M. F., Fung, S. F., Anderson, P. C., Hoffman, R. A., Baasinska, E. M., Bosqued, J. M. 1992Staircase Ion Signature in the Polar Cusp: A Case StudyGeophys. Res. Lett.191735Google Scholar
  8. Escoubet, C. P., Bosqued, J. M., Hoffman, R. A., Berthelier, A., Anderson, P. C. 1997Opposite Ion Dispersions Observed Quasi-simultaneously in the Polar Cusp by the DE-2 and Aureol-3 SatellitesGeophys. Res. Lett.242487CrossRefGoogle Scholar
  9. Fuselier, S. A., Klumpar, D. M., Shelley, E. G. 1991Ion Reflection and Transmissions During Reconnection at the Earth’s Subsolar MagnetopauseGeophys. Res. Lett.18139Google Scholar
  10. Fuselier, S.A., Waite, J.H., Avanov, L.A., Smirnov, V.M., Vaisberg, O.L., Siscoe, G. and Russell, C.T.: (2001). Characteristics of Magnetosheath Plasma in the Vicinity of the High Latitude Cusp. J. Geophys. Res., submittedGoogle Scholar
  11. Greenwald, R. A., Hunsuker, R. D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A. D. M., Sato, N., Yamagishi, H. 1995 ‘DARN/SUPERDARN A Global View of the Dynamics of High-latitude ConvectionSpace Sci. Rev.71761CrossRefGoogle Scholar
  12. Lockwood, M 1995Ground-based and Satellite Observations of the Cusp: Evidence for Pulsed Magnetopause ReconnectionSong, PSonnerup, B. U. OThomsen, M. F eds. Physics of the MagnetopauseGeophys. Monogr. Ser., 90 AGUWashington, D.C.417Google Scholar
  13. Lockwood, M. 1996The Case for Transient Magnetopause ReconnectionEOS Trans. AGU77246Google Scholar
  14. Lockwood, M., Cowley, S. W. H., Sandholt, P. E., Lepping, R. P. 1990The ionospheric signatures of flux transfer events and solar wind dynamic pressure changesJ. Geophys. Res.9517113Google Scholar
  15. Lockwood, M., Cowley, S. W. H., Smith, M. F. 1994Comment on: ‘By Fluctuations in the Magnetosheath and Azimuthal Flow Velocity Transient in the Dayside Ionosphere’ by Newell and SibeckGeophys. Res. Lett.211819CrossRefGoogle Scholar
  16. Lockwood, M., Davis, C. J., Smith, M. F., Onsager, T. G., Denig, W. F. 1995Location and Characteristics of the Reconnection X-line Deduced from Low-altitude Satellite and Ground-based Observations, Defense Meteorological Satellite Program and European Incoherent Scatter dataJ. Geophys. Res.10021803CrossRefGoogle Scholar
  17. Lockwood, M., Davis, C. J., Onsager, T. G., Scudder, J. D. 1998Modeling Signatures of Pulsed Magnetopause Reconnection in Cusp Ion Dispersion Signatures Seen at Middle AltitudesGeophys. Res. Lett.25591CrossRefGoogle Scholar
  18. Lockwood, M., Dening, W. F., Farmer, A. D., Davda, V. N., Cowley, S. W. H., Lühr, H. 1993Ionospheric Signatures of Pulsed Reconnection at the Earth’s MagnetopauseNature361424CrossRefGoogle Scholar
  19. Lockwood, M., Smith, M. F. 1989Low-altitude Signatures of the Cusp and Flux Transfer EventsGeophys. Res. Lett.16879Google Scholar
  20. Lockwood, M., Smith, M. F. 1990Reply to Comment by P.T. Newell on ‘Low-altitude Signatures of the Cusp and Flux Transfer Events’ by M. Lockwood and M.F. SmithGeophys. Res. Lett.17305Google Scholar
  21. Lockwood, M., Smith, M. F. 1992The Variation of Reconnection Rate at the Dayside Magnetopause and Cusp Ion PrecipitationJ. Geophys. Res.9714841Google Scholar
  22. Lockwood, M., Smith, M. F. 1993Comment on “Mapping the Dayside Ionosphere to the Magnetosphere According to Particle Precipitation Characteristics” by P.T. Newell and C.-I. MengGeophys. Res. Lett.201739Google Scholar
  23. Lockwood, M., Smith, M. F. 1994Low- and Mid-altitude Cusp Particle Signatures for General Magnetopause Reconnection Rate Variations I TheoryJ. Geophys. Res.998531CrossRefGoogle Scholar
  24. Newell, P. T., Meng, C.-I. 1991Ion Acceleration at the Equatorward Edge of the Cusp: Low-altitude Observations of Patchy MergingGeophys. Res. Lett.181829Google Scholar
  25. Newell, P. T., Sibeck, D. G. 1993Upper Limits on the Contribution of FTE’s to Ionospheric ConvectionGeophys. Res. Lett.202829Google Scholar
  26. Onsager, T. G., Kletzing, C. A., Austin, J. B., MacKiernan, H. 1993Model of Magnetosheath Plasma in the Magnetosphere: Cusp and Mantle Particles at Low AltitudesGeophys. Res. Lett.20479Google Scholar
  27. Onsager, T. G., Chang, S.-W., Perez, J. D., Austin, J. B., Jano, L. X. 1995Low-altitude Observations and Modeling of Quasi-steady Magnetopause ReconnectionJ. Geophys. Res.10011831CrossRefGoogle Scholar
  28. Paschmann, G., Sonnerup, B.U.Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T., Elphic, R. C. 1979Plasma Acceleration at the Earth’s magnetopause: Evidence for Magnetic Field ReconnectionNature282243CrossRefGoogle Scholar
  29. Phillips, J. L., Bame, S. J., Elphic, R. C., Gosling, J. T., Thomson, M. F., Onsager, T. G. 1993Well-resolved Observations by ISEE 2 of Ion Dispersion in the Magnetospheric CuspJ. Geophys. Res.9813429Google Scholar
  30. Pinnock, M., Rodger, A. S., Dudeney, J. R., Baker, K. B., Newell, P. T., Greenwald, R. A., Greenspan, M. E. 1993Observations of an Enhanced Convection Channel in the Cusp IonosphereJ. Geophys. Res.983767Google Scholar
  31. Reiff, P. H., Hill, T. W., Burch, J. L. 1977Solar Wind Plasma Injections at the Dayside Magnetospheric CuspJ. Geophys. Res.82479Google Scholar
  32. Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G., Sckopke, N. 1975Heos 2 Plasma Observations in the Distant Polar Magnetosphere: The Plasma MantleJ. Geophys. Res.802723Google Scholar
  33. Greenwald, R. A., Ruohoniemi, J.M. 1996Statistical Patterns of High Latitude Convection Obtained from Goose Bay HF Radar ObservationsJ. Geophys. Res.10121743CrossRefGoogle Scholar
  34. Ruohoniemi, J. M., Baker, K. B. 1998Large-scale Imaging of High Latitude Convection with Super Dual Auroral Radar Network HF Radar ObservationsJ. Geophys. Res.10320797CrossRefGoogle Scholar
  35. Sauvaud, J.-A., Barthe, H., Aoustin, C., Thocaven, J. J., Rouzaud, J., Penou, E., Popescu, D., Kovrazhkin, R. A., Afanasiev, K. G. 1998The ION Experiment Onboard the Interball-Aurora Satellite: Initial Results on Velocity-dispersed Structures in the Cleft and Inside the Aurora OvalAnn. Geophys.161056Google Scholar
  36. Shelley, E. G., Sharp, R. D., Johnson, R. G. 1976He++ and H+ Flux Measurements in the Day Side Cusp: Estimates of Convection Electric FieldJ. Geophys. Res.812363Google Scholar
  37. Shelley, E. G., Ghielmetti, A. G., Balsiger, H., Black, R. K., Bowles, J. A., Bowman, R. P., Bratschi, O., Burch, J. L., Carlson, C. W., Coker, A. J., Drake, J. F., Fischer, J., Geiss, J., Johnstone, A., Kloza, D. L., Lennartsson, O. W., Magoncelli, A. L., Paschmann, G., Peterson, W. K., Rosenbauer, H., Sanders, T. C., Steinacher, M., Walton, D. M., Whalen, B. A., Young, D. T.,  et al. 1995The Toroidal Imaging Mass-angle Spectrograph (TIMAS) for the Polar MissionSpace Sci. Rev.71497CrossRefGoogle Scholar
  38. Smith, E. J., Lockwood, M., Cowley, S. W. H. 1992The Statistical Cusp: The Flux Transfer Event ModelPlanet. Space Sci.401251CrossRefGoogle Scholar
  39. Sonnerup, B.U.Ö, Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T. 1981Evidence for Magnetic Field Reconnection at the Earth’s MagnetopauseJ. Geophys. Res.8610049Google Scholar
  40. Trattner, K. J., Fuselier, S. A., Peterson, W. K., Sauvaud, J.-A., Stenuit, H., Dubouloz, N. 1999On Spatial and Temporal Structures in the CuspJ. Geophys. Res.10428411CrossRefGoogle Scholar
  41. Trattner, K. J., Fuselier, S. A., Peterson, W. K., Boehm, M., Klumpar, D., Carlson, C. W., Yeoman, T. K. 2002aTemporal Versus Spatial Interpretation of Cusp Ion Structures Observed by Two SpacecraftJ. Geophys. Res.1071287doi: 10.1029/2001JA000181CrossRefGoogle Scholar
  42. Trattner, K. J., Fuselier, S. A., Peterson, W. K., Carlson, C. W. 2002bSpatial Features Observed in the Cusp Under Steady Solar Wind ConditionsJ. Geophys. Res.107128810.1029/2001JA000262CrossRefGoogle Scholar
  43. Trattner, K. J., Fuselier, S. A., Yeoman, T. K., Korth, A., Fraenz, M., Mouikis, C., Kucharek, H., Kistler, L. M., Escoubet, C. P., R‘ eme, H., Dandouras, I., Sauvaud, J. A., Bosqued, J. M., Klecker, B., Carlson, C., Phan, T., McFadden, J. P., Amata, E., Eliasson, L. 2003Cusp Structures: Combining Multi-spacecraft Observations with Ground Based ObservationsAnn. Geophys.212031Google Scholar
  44. Weiss, L. A., Reiff, P. H., Carlson, H. C., Weber, E. J., Lockwood, M. 1995Flow-alignment Jets in the Magnetospheric Cusp: Results from the Geospace Environment Modeling Pilot programJ. Geophys. Res.1007649CrossRefGoogle Scholar
  45. Wing, S., Newell, P. T., Rouhoniemi, J. M. 2001Douple Cusp: Model Prediction and Observational VerificationJ. Geophys. Res.10625571CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • K. J. Trattner
    • 1
  • S. A. Fuselier
    • 1
  • T. K. Yeoman
    • 2
  • C. Carlson
    • 3
  • W. K. Peterson
    • 4
  • A. Korth
    • 5
  • H. Reme
    • 6
  • J. A. Sauvaud
    • 6
  • N. Dubouloz
    • 7
  1. 1.Lockheed-Martin Advanced Technology CenterPalo AltoUSA
  2. 2.Department of Physics and AstronomyUniversity of LeicesterLeicesterEngland
  3. 3.University of CaliforniaBerkeleyUSA
  4. 4.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  5. 5.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany
  6. 6.CESRToulouseFrance
  7. 7.LPCE/CNESOrleansFrance

Personalised recommendations