Surveys in Geophysics

, Volume 26, Issue 1–3, pp 5–55 | Cite as

Cluster Observations of the CUSP: Magnetic Structure and Dynamics

  • M. W. Dunlop
  • B. Lavraud
  • P. Cargill
  • M. G. G. T. Taylor
  • A. Balogh
  • H. Réme
  • P. Decreau
  • K. -H. Glassmeier
  • R. C. Elphic
  • J. -M. Bosqued
  • A. N. Fazakerley
  • I. Dandouras
  • C. P. Escoubet
  • H. Laakso
  • A. Marchaudon


This paper reviews Cluster observations of the high altitude and exterior (outer) cusp, and adjacent regions in terms of new multi-spacecraft analysis and the geometry of the surrounding boundary layers. Several crossings are described in terms of the regions sampled, the boundary dynamics and the electric current signatures observed. A companion paper in this issue focuses on the detailed plasma distributions of the boundary layers. The polar Cluster orbits take the four spacecraft in a changing formation out of the magnetosphere, on the northern leg, and into the magnetosphere, on the southern leg, of the orbits. During February to April the orbits are centred on a few hours of local noon and, on the northern leg, generally pass consecutively through the northern lobe and the cusp at mid- to high-altitudes. Depending upon conditions, the spacecraft often sample the outer cusp region, near the magnetopause, and the dayside and tail boundary layer regions adjacent to the central cusp. On the southern, inbound leg the sequence is reversed. Cluster has therefore sampled the boundaries around the high altitude cusp and nearby magnetopause under a variety of conditions. The instruments onboard provide unprecedented resolution of the plasma and field properties of the region, and the simultaneous, four-spacecraft coverage achieved by Cluster is unique. The spacecraft array forms a nearly regular tetrahedral configuration in the cusp and already the mission has covered this region on multiple spatial scales (100–2000 km). This multi-spacecraft coverage allows spatial and temporal features to be distinguished to a large degree and, in particular, enables the macroscopic properties of the boundary layers to be identified: the orientation, motion and thickness, and the associated current layers. We review the results of this analysis for a number of selected crossings from both the North and South cusp regions. Several key results have been found or have confirmed earlier work: (1) evidence for magnetically defined boundaries at both the outer cusp/magnetosheath interface and the␣inner cusp/lobe or cusp/dayside magnetosphere interface, as would support the existence of a distinct exterior cusp region; (2) evidence for an associated indentation region on the magnetopause across the outer cusp; (3) well defined plasma boundaries at the edges of the mid- to high-altitude cusp “throat”, and well defined magnetic boundaries in the high-altitude “throat”, consistent with a funnel geometry; (4) direct control of the cusp position, and its extent, by the IMF, both in the dawn/dusk and North/South directions. The exterior cusp, in particular, is highly dependent on the external conditions prevailing. The magnetic field geometry is sometimes complex, but often the current layer has a well defined thickness ranging from a few hundred (for the inner cusp boundaries) to 1000 km. Motion of the inner cusp boundaries can occur at speeds up to 60 km/s, but typically 10–20 km/s. These speeds appear to represent global motion of the cusp in some cases, but also could arise from expansion or narrowing in others. The mid- to high-altitude cusp usually contains enhanced ULF wave activity, and the exterior cusp usually is associated with a substantial reduction in field magnitude.


boundary dynamics Cluster magnetospheric cusps 



advanced composition explorer


geocentric solar ecliptic


geocentric solar magnetic


interplanetary magnetic field


local time


minimum variation analysis


earth’s radius


ultra-low frequency


universal time


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon,  K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T, Schwingenschuh, K. 2001The Cluster Magnetic Field Investigation: Overview of in-flight Performance and Initial ResultsAnn. Geophys.1912071217Google Scholar
  2. Cargill, P. J., Dunlop, M. W., Balogh, A., and the FGM Team: 2001, ‘First Cluster Results of the Magnetic Field Structure of the Medium and High-altitude Cusps’, Ann. Geophys. 19, 1533–1543Google Scholar
  3. Cargill, P. J., Dunlop, M. W., Lavraud, B., Elphic, R.C., Holland, D. L., Nykyri, K., Balogh, A., Danouras, I., and Réme, H.: 2003, ‘CLUSTER Encounters with the High Altitude Cusp: Boundary Structure and Magnetic Field Depletions’, submitted to Ann. GeophysGoogle Scholar
  4. Dubinin, E., Skalsky, A., Song, P., Savin, S., Kozyra, J., Moore, T. E., Russell, C. T., Chandler, M. O., Fedorov, A., Avanov, L., Sauvaud, J.-A., and Friedel, R. H. W.: 2002, ‘Polar Interball Co-ordinated Observations of Plasma and Magnetic Field Characteristics in the Regions of the Northern and Southern Distant Cusps’, J. Geophys. Res. 107 (A5), Art. No. 1053Google Scholar
  5. Dunlop, M. W., Southwood, D. J., and Balogh, A.: 1993, ‘The Cluster Configuration and the Directional Dependence of Coherence Lengths in the Magnetosheath’, in Proceedings of Spatio-Temporal Analysis for Resolving Plasma Turbulence (START), Aussois, France, ESA WPP-47, pp. 295–299Google Scholar
  6. Dunlop, M. W., and Balogh, A.: 1993, ‘On the Analysis and Interpretation of Four Spacecraft Magnetic Field Measurements in Terms of Small Scale Plasma Processes’, in Spatio-temporal Analysis for Resolving Plasma Turbulence (START) ESA WPP-047, pp. 223–231Google Scholar
  7. Dunlop, M. W., Woodward, T. I., Southwood, D. J., Glassmeier, K.-H, Elphic, R. C. 1997Merging 4 Spacecraft Data: Concepts Used for Analysing DiscontinuitiesAdv. Space Res.2011011106CrossRefGoogle Scholar
  8. Dunlop, M. W., and Woodward, T. I.: 1998, ‘Discontinuity Analysis: Orientation and Motion’, ISSI Scientific Report SR-001, Kluwer Academic Publishers, pp. 271–305Google Scholar
  9. Dunlop, M. W, Woodward, T. I. 1999Analysis of Thick, Non-planar Boundaries Using the Discontinuity AnalyserAnn Geophys.17984995Google Scholar
  10. Dunlop, M. W., Cargill, P., Stubbs, T, Woolliams, P. 2000The High Altitude Cusps: HEOS-2J. Geophys. Res.1052750927517CrossRefGoogle Scholar
  11. Dunlop, M. W., Balogh, A., and Glassmeier, K.-H.: 2002a, ‘Four-Point Cluster Application Of Magnetic Field Analysis Tools: The Discontinuity Analyser’, in press, J. Geophys. Res. 107(A11), Art. No. 1385Google Scholar
  12. Dunlop, M. W., Balogh, A., Glassmeier, K.-H., and Robert, P.: 2002b, ‘Four-Point Cluster Application of Magnetic Field Analysis Tools: The Curlometer’, in press, J. Geophys. Res. 107(A11), Art. No. 1384Google Scholar
  13. Eastman, T. E., Boardsen, S. A., Chen, S-H, Fung, S. F. 2000Configuration of High-latitude and High-altitude Boundary LayersJ. Geophys. Res.1052319323238CrossRefGoogle Scholar
  14. Farrell, W. M, Allen, J. A. 1990Observations of the Earth’s Polar Cleft at Large Radial Distances with the Hawkeye 1 SatelliteJ. Geophys. Res.952094520958Google Scholar
  15. Fedorov, A., Dubinin, E., Song, P., Budnick, E., Larson, P, Sauvaud, J.-A. 2000Characteristics of the Exterior Cusp for Steady Southward Interplanetary Magnetic Field: Interball ObservationsJ. Geophys. Res.1051594515957CrossRefGoogle Scholar
  16. Frank, L. A. 1971Plasma in the Earth’s Polar MagnetosphereJ. Geophys. Res.7652025219Google Scholar
  17. Fritz, T. A., Chen, J., and Siscoe, G. L.: 2003, ‘Energetic Ions, Large Diamagnetic Cavities, and Chapman-Ferraro Cusp’, J. Geophys. Res. 108, (A1): Art. No. 1028Google Scholar
  18. Grande, M., Fennell, J., Livi, S., Kellett, B., Perry, C. H., Anderson, P., Roeder, J., Spence, H., Fritz, T, Wilken, B. 1997First Polar and 1995–034 Observations of the Mid-altitude Cusp During a Persistent Northward IMF ConditionGeophys. Res. Lett.2414751478CrossRefGoogle Scholar
  19. Haerendel, G., Paschmann, G., Sckopke, N, Rosenbauer, H. 1978The Frontside Boundary Layer of the Magnetosphere and the Problem of ReconnectionJ. Geophys. Res.8331953216Google Scholar
  20. Johnstone, A. D., Alsop, C., Burge, S., Carter, P. J., Coates, A. J., Coker, A. J., Fazakerley, A. N., Grande, M., Gowen, R. A., Gurgiolo, C., Hancock, B. K., Narheim, B., Preece, A., Sheather, P. H., Winningham, J. D, Woodliffe, R. D. 1997Peace: A Plasma Electron and Current ExperimentSpace Sci. Rev.79351398CrossRefGoogle Scholar
  21. Kessel, R. L., Chen, S.-H., Green, J. L., Fung, S. F., Boardsen, S. A., Tan, L. C., Eastman, T. E., Craven, J. D, Frank, L. A. 1996Evidence of High-latitude Reconnection during Northward IMF: Hawkeye ObservationsGeophys. Res. Lett.23583586CrossRefGoogle Scholar
  22. Lavraud, B., Dunlop, M. W., Phan, T. D., Reme, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Lundin, R., Taylor, M. G. G. T., Cargill, P. J., Mazelle, C., Escoubet, C. P., Carlson, C. W., McFadden, J. P., Parks, G. K., Moebius, E., Kistler, L. M., Bavassano-Cattaneo, M. B., Korth, A., Klecker, B, Balogh, A. 2002Cluster Observations of the Exterior Cusp and its Surrounding Boundaries under Northward IMFGeophys. Res. Lett.295663CrossRefGoogle Scholar
  23. Lavraud, B., Réme, H., Dunlop, M. W., Bosqued, J.-M., Dandouras, I., Sauvaud, J.-A., Keiling, A., Phan, T. D., Lundin, R., Cargill, P., Escoubet, C. P., Carlson, C. W., McFadden, J. P., Parks, G. K., Moebius, E., Kistler, L., Amata, E., Bavassano-Cattaneo, M.-B., Korth, A., Klecker, B., and Balogh, A.: 2003, ‘Cluster Observes the High Altitude/Exterior Cusp Regions’. This issueGoogle Scholar
  24. Lepping, R. P., Acuna, M., Burlaga, L., Farrell, W., Slavin, J., Schatten, K., Mariani, F., Ness, N., Newbauer, F., Whang, Y. C., Byrnes, J., Kennon, R., Panetta, P., Scheifele, J, Worleyet, E. 1995The WIND Magnetic Field InvestigationSpace Sci. Revs.71207229CrossRefGoogle Scholar
  25. Lundin, R., Sauvaud, J.-A., Réme, H., Balogh, A., Dandouras, I., Bosqued, J. M., Carlson, C., Parks, G. K., Moebius, E., Kistler, L. M., Klecker, B., Amata, E., Formisano, V., Dunlop, M. W., Eliasson, L., Korth, A., Lavraud, B, McCarthy, M. 2003Evidence for Impulsive Solar Wind Plasma Penetration through the Dayside MagnetopauseAnn. Geophys.21457472Google Scholar
  26. Marchaudon, A., Cerisier, J.-C., Bosqued, J.-M., Dunlop, M. W., Wild, J. A., Dècrèau, P. M. E., Förster, M., Fontaine, D., and Laakso, H.: 2003, ‘Transient Plasma Injections in the Dayside Magnetosphere: One-to-one Correlated Observations by Cluster and BY SuperDARN’. In press, Ann. GeophysGoogle Scholar
  27. Newell, P. T, Meng, C. I. 1988The Cusp and the Cleft/LLBL: Low Altitude Identification and Statistical Local Time VariationJ. Geophys. Res.931454914556Google Scholar
  28. Newell, P. T., Meng, C. I., Sibeck, D. G, Lepping, P. 1989Some Low-altitude Cusp Dependencies on the Interplanetary Magnetic FieldJ. Geophys. Res.9489218927Google Scholar
  29. Newell, P. T, Meng, C. I. 1994Ionospheric Projections of Magnetospheric Regions under Low and High Solar Wind Pressure ConditionsJ. Geophys. Res.99273286CrossRefGoogle Scholar
  30. Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Lobell, J., Miller, G., Scudder, J. D., Sittler, E. C.,Jr., Tobert, R., Bodet, D., Needell, G., Lazarus, A. J., Steinberg, J. T., Tappan, J. H., Marretic, A., Keller, J, Gergin, E. 1995SWE: A Comprehensive Plasma Instrument for the WIND SpacecraftSpace Sci. Revs.715577CrossRefGoogle Scholar
  31. Onsager, T. G., Scudder, J. D., Lockwood, M, Russell, C. T. 2001Reconnection at the High-Latitude Magnetopause during Northward Interplanetary Magnetic Field ConditionsJ. Geophys. Res.1062546725488CrossRefGoogle Scholar
  32. Paschmann, G., Haerendel, G., Sckopke, N, Rosenbauer, H. 1976Plasma and Magnetic Field Characteristics of the Distant Polar Cusp Near Local Noon: The Entry LayerJ. Geophys. Res.8128832899Google Scholar
  33. Paschmann, G., and Daley, P. (eds): 1988, Analysis Methods for Multispacecraft Data. ISSI Scientific Report SR-001, Kluwer Academic Publishers, pp. 271–284Google Scholar
  34. Réme, H., Aoustin, C., Bosqued, M., Dandouras, I., Lavraud, B., Sauvaud, J.-A., Barthe, A., Bouyssou, J., Camus, T., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcayde, D., Jacquey, C., Mazelle, C., d’Uston, C., Mobius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J. B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Schudder, J, Sonnerup, B. 2001First Multispacecraft Ion Measurements in and Near the Earth’s Magnetosphere with the Identical Cluster Ion Spectrometry (CIS) ExperimentAnn. Geophys.1913031354Google Scholar
  35. Robert, P., and Roux A.: 1993, ‘Dependance of the Shape of the Tetrahedron on the Accuracy of the Estimate of the Current Density’, in Spatio-temporal Analysis for Resolving Plasma Turbulence (START), ESA WPP-047, pp. 289–302Google Scholar
  36. Robert, P., Dunlop, M.W., Roux, A., and Chanteur, G.: 1998, ‘Accuracy of Current Density Determination, in Analysis Methods for Multispacecraft Data’, ISSI Science Report, SR-001, Kluwer Academic Publishers, pp. 395–418Google Scholar
  37. Russell, C. T., Melliot, M. M., Smith, E. J, King, J. H. 1983Multiple Spacecraft Observations of Interplanetary Shocks: Four Spacecraft Determinations of Shock NormalsJ. Geophys. Res.8847394748Google Scholar
  38. Russell, C.T.: 2000, ‘POLAR Eyes in the Cusp, Proc. of the Cluster II workshop: Multiscale/Multi-oint Plasma Measurements’, ESA SP-449, pp. 47–55Google Scholar
  39. Savin, S. P., Romanov, S. A., Fedorov, A. O., Zelenyi, L., Klimov, S. I., Yermolaev, Yu. I, Budnik, E. Yu, Nikolaeva, N. S., Russell, C. T., Zhou, X.-W., Urquhart, A. L, Reiff, P. H. 1998The Cusp/Magnetosheath Interface on May 29, 1996: Interball 1 and Polar ObservationsGeophys. Res. Lett.2529632966CrossRefGoogle Scholar
  40. Scudder, J. D., Mozer, F. S., Maynard, N. C., and Russell, C. T.: 2002, ‘Fingerprints of Collisionless Reconnection at the Separator, I, Ambipolar-Hall Signatures’, J. Geophys. Res. 107(A10), Art. No. 1294Google Scholar
  41. Sibeck, D. G., Lopez, R. E, Roelof, E. C. 1991Solar Wind Control of the Magnetopause Shape Location and MotionJ. Geophys. Res.9654895495Google Scholar
  42. Sonnerup, B. U. O, Cahill, L. J. 1967Magnetopause Structure and Attitude from Explorer 12 ObservationsJ. Geophys. Res.72171183Google Scholar
  43. Spreiter, J. R., Alksne, A. Y, Summers, A. L. 1968External Aerodynamics of the MagnetosphereCarovillano, R. LMcClay, J. F.Radoski, H. R. eds. Physics of the MagnetosphereD. ReidelHingham, Mass301375Google Scholar
  44. Tsyganenko, N. A. 1989A Magnetospheric Field Model with a Warped Tail Current SheetPlanet. Space Sci.37520CrossRefGoogle Scholar
  45. Tsyganenko, N. A, Russell, C. T. 1999Magnetic Signatures of the Distant Polar Cusps: Observations B Y Polar and Quantitative ModelingJ. Geophys. Res1042493924955CrossRefGoogle Scholar
  46. Vasyliunas, V. M., Skopke, N, Rosenbauer, H. 1979Structure of the Polar Magnetosheath as Observed B Y HEOS 2EOS Trans. AGU5812061215Google Scholar
  47. Vasyliunas, V. M. 1995Multiple-Branch Model of the Open MagnetopauseGeophys. Res. Lett.2211451147CrossRefGoogle Scholar
  48. Vontrat-Reberac, A., Bosqued, J. M., Taylor, M. G., Lavraud, B., Fontaine, D., Dunlop, M. W., Laakso, H., Cornilleau-Werhlin, N., Canu, P., and Fazarkerley, A.: 2003, ‘Cluster Observations of the High-altitude Cusp for Northward Interplanetary Magnetic Field: A Case Study’, J. Geophys. Res., 108(A9), Art. No. 1346Google Scholar
  49. Woch, J, Lundin, R. 1992Magnetosheath Plasma Precipitation in the Polar Cusp and its Control B Y the Interplanetary Magnetic FieldJ. Geophys. Res.9714211430Google Scholar
  50. Yamauchi, M., and Lundin, R.: 1994, ‘Classification of Large-scale and Meso-scale Ion Dispersion Patterns Observed BY Viking over the Cusp-mantle Region’, in J. A. Holtet, and A. Egeland (eds.), Physical Signatures of Magnetospheric Boundary Layer Process, Kluwer Academic Publishers, pp. 99–109Google Scholar
  51. Yamauchi, M., Nilsson, H., Eliasson, L., Norberg, O., Boehm, M., Clemmons, J. H., Lepping, R. P., Blomberg, L., Ohtani, S.-I., Yamamoto, T., Mukai, T., Terasawa, T, Kokubun, S. 1996Dynamic Response of the Cusp Morphology to the Solar Wind: A Case Study during Passage of the Solar Wind Plasma Cloud on February 21, 1994J. Geophys. Res.1012467524687CrossRefGoogle Scholar
  52. Zhou, X.-W, Russell, C. T. 1997The Location of the High-latitude Polar Cusp and the Shape of the Surrounding MagnetopauseJ. Geophys. Res.102105110CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M. W. Dunlop
    • 1
  • B. Lavraud
    • 2
  • P. Cargill
    • 3
  • M. G. G. T. Taylor
    • 4
  • A. Balogh
    • 3
  • H. Réme
    • 2
  • P. Decreau
    • 5
  • K. -H. Glassmeier
    • 6
  • R. C. Elphic
    • 4
  • J. -M. Bosqued
    • 2
  • A. N. Fazakerley
    • 7
  • I. Dandouras
    • 2
  • C. P. Escoubet
    • 8
  • H. Laakso
    • 8
  • A. Marchaudon
    • 9
  1. 1.SSTD, Rutherford Appleton LaboratoryChilton, DidcotUK
  2. 2.CESRToulouse Cedex 4France
  3. 3.Imperial CollegeLondonUK
  4. 4.Los Alamos National LaboratoryLos AlamosUSA
  5. 5.LPCE/CNRS and Université d’OrléansOrléansFrance
  6. 6.Institut für Geophysik und MeteorologieTUBSBraunschweigGermany
  7. 7.Mullard Space Science LaboratoryUniversity College LondonUK
  8. 8.ESA/ESTEC RSSDNoordwijkThe Netherlands
  9. 9.CETPSaint-Maur-des-Fossés CedexFrance

Personalised recommendations