Skip to main content
Log in

Acylindrical hyperbolicity and Artin-Tits groups of spherical type

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove that, for any irreducible Artin-Tits group of spherical type G, the quotient of G by its center is acylindrically hyperbolic. This is achieved by studying the additional length graph associated to the classical Garside structure on G, and constructing a specific element \(x_G\) of G / Z(G) whose action on the graph is loxodromic and WPD in the sense of Bestvina–Fujiwara; following Osin, this implies acylindrical hyperbolicity. Finally, we prove that “generic” elements of G act loxodromically, where the word “generic” can be understood in either of the two common usages: as a result of a long random walk or as a random element in a large ball in the Cayley graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bestvina, M., Fujiwara, K.: Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6, 69–89 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bowditch, B.: Tight geodesics in the curve complex. Invent. Math. 171(2), 281–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessis, D.: The dual braid monoid. Ann. Sci. École Norm. Sup. (4) 36, 647–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bestvina, M., Feighn, M.: A hyperbolic \(Out(F_n)\)-complex. Groups Geom. Dyn. 4, 31–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birman, J., Ko, K.-H., Lee, S.-J.: A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139(2), 322–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, 245–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvez, M., Wiest, B.: Curve graphs and Garside groups. arXiv:1503.02482 (To appear in Geometriae Dedicata)

  8. Caruso, S.: On the genericity of pseudo-Anosov braids I: rigid braids. arXiv:1306.3757

  9. Caruso, S., Wiest, B.: On the genericity of pseudo-Anosov braids II: conjugations to rigid braids. arXiv:1309.6137 (To appear in J. Groups Geom. Dyn.)

  10. Coxeter, H.S.M.: The complete enumeration of finite groups of the form \(r_i^2=(r_ir_j)^{k_{ij}}=1\). J. Lond. Math. Soc. 1–10(1), 21–25 (1935)

    Article  MATH  Google Scholar 

  11. Dehornoy, P.: Groupes de Garside. Ann. Sci. École Norm. Sup. (4) 35, 267–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22. European Mathematical Society (2015)

  13. Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Garside groups. Proc. Lond. Math. Soc. 79(3), 569–604 (1999)

    Article  MATH  Google Scholar 

  14. Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Epstein, D.B.A., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word Processing in Groups. Jones and Bartlett Publishers, Boston (1992)

    MATH  Google Scholar 

  16. Garside, F.: The braid group and other groups. Q. J. Math. Oxf. II Ser. 20, 235–254 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gebhardt, V., González-Meneses, J.: The cyclic sliding operation in Garside groups. Math. Z. 265(1), 85–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gebhardt, V., Tawn, S.: On the penetration distance in Garside monoids. arXiv:1403.2669

  19. Kim, S.-H., Koberda, T.: Embedability between right-angled Artin groups. Geom. Topol. 17(1), 493–530 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, S.-H., Koberda, T.: The geometry of the curve graph of a right-angled Artin group. Int. J. Algebra Comput. 24(2), 121–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Masur, H., Minsky, Y.: Geometry of the complex of curves I: hyperbolicity. Invent. math. 138, 103–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Michel, J.: A note on words in braid monoids. J. Algebra 215, 366–377 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Osin, D.: Acylindrically hyperbolic groups. Trans. Am. Math. Soc. 368, 851–888 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sisto, A.: Quasi-convexity of hyperbolically embedded subgroups. arXiv:1310.7753

  25. Sisto, A.: Contracting elements and random walks. arXiv:1112.2666

  26. Wiest, B.: On the genericity of loxodromic actions. arXiv:1406.7041 (To appear in Isr. J. Math.)

Download references

Acknowledgements

The first author was supported by the “initiation to research” Project No. 11140090 from Fondecyt and by Dr. Andrés Navas through the Project USA1555 from University of Santiago de Chile. He also acknowledges support by PIA-CONICYT ACT1415 and by MTM2010-19355 and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Calvez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvez, M., Wiest, B. Acylindrical hyperbolicity and Artin-Tits groups of spherical type. Geom Dedicata 191, 199–215 (2017). https://doi.org/10.1007/s10711-017-0252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-017-0252-y

Keywords

Mathematics Subject Classification

Navigation