Geometriae Dedicata

, Volume 178, Issue 1, pp 351–387 | Cite as

Generalized conformal densities for higher products of rank one Hadamard spaces

  • Gabriele Link
Original paper


Let \(X\) be a product of locally compact rank one Hadamard spaces and \(\Gamma \) a discrete group of isometries which contains two elements projecting to a pair of independent rank one isometries in each factor. In Link (Asymptotic geometry in higher products of rank one Hadamard spaces. arXiv:1308.5584, 2013) we gave a precise description of the structure of the geometric limit set \(L_\Gamma \) of \(\Gamma \); our aim in this paper is to describe this set from a measure theoretical point of view, using as a basic tool the properties of the exponent of growth of \(\Gamma \) established in the aforementioned article. We first show that the conformal density obtained from the classical Patterson–Sullivan construction is supported in a unique \(\Gamma \)-invariant subset of the geometric limit set; generalizing this classical construction we then obtain measures supported in each \(\Gamma \)-invariant subset of the regular limit set and investigate their properties. We remark that apart from Kac–Moody groups over finite fields acting on the Davis complex of their associated twin building, the probably most interesting examples to which our results apply are isometry groups of reducible CAT(0)-cube complexes without Euclidean factors.


CAT (0)-spaces Products Cubical complexes Discrete groups  Rank one isometries Limit set Patterson–Sullivan theory 

Mathematics Subject Classification

20F69 22D40 22G44 51F99 



The first draft of this paper was initiated during the author’s stay at IHES in Bures-sur-Yvette. She warmly thanks the institute for its hospitality and the inspiring atmosphere.


  1. 1.
    Albuquerque, P.: Patterson–Sullivan theory in higher rank symmetric spaces. Geom. Funct. Anal. 9(1), 1–28 (1999)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ballmann, W.: Axial isometries of manifolds of nonpositive curvature. Math. Ann. 259(1), 131–144 (1982)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ballmann, W.: Lectures on Spaces of Nonpositive Curvature, DMV Seminar, vol. 25. Birkhäuser, Basel (1995). With an appendix by Misha BrinCrossRefGoogle Scholar
  4. 4.
    Ballmann, W., Brin, M.: Orbihedra of nonpositive curvature. Inst. Hautes Études Sci. Publ. Math. 82, 169–209 (1995)Google Scholar
  5. 5.
    Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature, Progress in Mathematics, vol. 61. Birkhäuser Boston Inc, Boston (1985)CrossRefGoogle Scholar
  6. 6.
    Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 319. Springer, Berlin (1999)Google Scholar
  7. 7.
    Burger, M.: Intersection, the Manhattan Curve, and Patterson-Sullivan Theory in Rank 2. Int. Math. Res. Notices 7, 217–225 (1993)CrossRefGoogle Scholar
  8. 8.
    Caprace, P.-E., Fujiwara, K.: Rank-one isometries of buildings and quasi-morphisms of Kac–Moody groups. Geom. Funct. Anal. 19(5), 1296–1319 (2010)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Caprace, P.-E., Rémy, B.: Simplicity and superrigidity of twin building lattices. Invent. Math. 176(1), 169–221 (2009)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Caprace, P.-E., Sageev, M.: Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal. 21(4), 851–891 (2011)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dal’Bo, F., Kim, I.: Shadow lemma on the product of Hadamard manifolds and applications. Actes du Séminaire de Théorie Spectrale et Géométrie, vol. 25. Année 2006–2007, Sémin. Théor. Spectr. Géom., vol. 25, Univ. Grenoble I, Saint, 2008, pp. 105–119Google Scholar
  12. 12.
    Knieper, G.: On the asymptotic geometry of nonpositively curved manifolds. Geom. Funct. Anal. 7(4), 755–782 (1997)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Link, G.: Hausdorff dimension of limit sets of discrete subgroups of higher rank Lie groups. Geom. Funct. Anal. 14(2), 400–432 (2004)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Link, G.: Asymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds. Ann. Glob. Anal. Geom. 31(1), 37–57 (2007)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Link, G.: Asymptotic geometry in products of Hadamard spaces with rank one isometries. Geom. Topol. 14(2), 1063–1094 (2010)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Link, G.: Asymptotic Geometry in Higher Products of Rank One Hadamard Spaces. arXiv:1308.5584 (2013)
  17. 17.
    Patterson, S.J.: The limit set of a Fuchsian group. Acta Math. 136(3–4), 241–273 (1976)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Quint, J.-F.: Mesures de Patterson–Sullivan en rang supérieur. Geom. Funct. Anal. 12(4), 776–809 (2002)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Rémy, B.: Construction de réseaux en théorie de Kac–Moody. C. R. Acad. Sci. Paris Sér. I Math. 329(6), 475–478 (1999)MATHCrossRefGoogle Scholar
  20. 20.
    Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. 50, 171–202 (1979)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut für Algebra und GeometrieKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations