Skip to main content
Log in

Sectional curvature for Riemannian manifolds with density

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we introduce two new notions of sectional curvature for Riemannian manifolds with density. Under both notions of curvature we classify the constant curvature manifolds. We also prove generalizations of the theorems of Cartan–Hadamard, Synge, and Bonnet–Myers as well as a generalization of the (non-smooth) 1/4-pinched sphere theorem. The main idea is to modify the radial curvature equation and second variation formula and then apply the techniques of classical Riemannian geometry to these new equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985) (French)

  2. Berger, M.: Sur certaines variétés riemanniennes à courbure positive. C. R. Acad. Sci. Paris 247, 1165–1168 (1958). (French)

    MATH  MathSciNet  Google Scholar 

  3. Berger, M.: Les variétés Riemanniennes (1/4)-pincées. Ann. Scuola Norm. Sup. Pisa. 14(3), 161–170 (1960). (French). MR0140054 (25 #3478)

    MATH  MathSciNet  Google Scholar 

  4. Berger, M.: Trois remarques sur les variétés riemanniennes à courbure positive. C. R. Acad. Sci. Paris Sér. A-B 263, A76–A78 (1966)

    Google Scholar 

  5. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94(1), 119–145 (1925)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang, S.-Y.A., Gursky, M.J., Yang, P.: Conformal invariants associated to a measure. Proc. Natl. Acad. Sci. USA 103(8), 2535–2540 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang, S.-Y.A., Gursky, M.J., Yang, P.: Conformal invariants associated to a measure: conformally covariant operators. Pac. J. Math. 253(1), 37–56 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Corwin, I., Hoffman, N., Hurder, S., Sesum, V., Xu, Y.: Differential geometry of manifolds with density. Rose-Hulman Und. Math. J. 7(1), article 2 (2006)

  9. Corwin, I., Morgan, F.: The Gauss–Bonnet formula on surfaces with densities. Involve 4(2), 199–202 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Croke, C.B., Schroeder, V.: The fundamental group of compact manifolds without conjugate points. Comment. Math. Helv. 61(1), 161–175 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carmo, M.P. do: Riemannian Geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston (1992). Translated from the second Portuguese edition by Francis Flaherty (1992)

  12. Hamilton, R.S.: The Ricci flow on surfaces, mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, Am. Math. Soc. (Providence, RI, 1988), pp. 237–262 (1988)

  13. Jauregui, J.L., Wylie, W.: Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-Einstein manifolds. J. Geom. Anal. 25(1), 668–708 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kolesnikov, A.V., Milman, E.: Poincaré and Brunn–Minkowski inequalities on weighted Riemannian manifolds with boundary. arXiv:1310.2526

  15. Kennard, L., Wylie, W.: Positive weighted sectional curvature. arXiv:1410.1558

  16. Klingenberg, W.: Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Comment. Math. Helv. 35, 47–54 (1961). (German)

    Article  MATH  MathSciNet  Google Scholar 

  17. Klingenberg, W.: Riemannian Geometry, de Gruyter Studies in Mathematics, vol. 1. Walter de Gruyter & Co., Berlin (1982)

    Google Scholar 

  18. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I, Wiley Classics Library, Wiley, New York (1996). Reprint of the 1963 original

  19. Kühnel, W., Rademacher, H.-B.: Einstein spaces with a conformal group. Results Math. 56(1–4), 421–444 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970). (French)

    MathSciNet  Google Scholar 

  21. Lichnerowicz, A.: Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative. J. Differ. Geom. 6, 47–94 (1971/1972) (French)

  22. Lott, J.: Some geometric properties of the Bakry–Émery-Ricci tensor. Comment. Math. Helv. 78(4), 865–883 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lott, J.: Remark about scalar curvature and Riemannian submersions. Proc. Am. Math. Soc. 135(10), 3375–3381 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Milman, E.: Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension. arXiv:1409.4109

  25. Ovidiu, M., Jiaping, w: Analysis of weighted Laplacian and applications to Ricci solitons. Comm. Anal. Geom. 20(1), 55–94 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Morgan, F.: Manifolds with density. Notices Am. Math. Soc. 52(8), 853–858 (2005)

    MATH  Google Scholar 

  27. Morgan, F.: Myers’ theorem with density. Kodai Math. J. 29(3), 455–461 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Morgan, F.: Geometric Measure Theory, 4th edn. Elsevier/Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  29. Morgan, F.: Manifolds with density and Perelman’s proof of the Poincaré conjecture. Am. Math. Mon. 116(2), 134–142 (2009)

    Article  MATH  Google Scholar 

  30. Ohta, S.: (K, N)-convexity and the curvature-dimension condition for negative N. arXiv:1310.7993

  31. Brad, O., Dennis, S.: The Schwarzian derivative and conformal mapping of Riemannian manifolds. Duke Math. J. 67(1), 57–99 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  33. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  34. Qian, Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxf. Ser. 48(2), 235–242 (1997)

    Article  MATH  Google Scholar 

  35. Synge, J.L.: On the connectivity of spaces of positive curvature. Quart. J. Math. 7, 316–320 (1936)

    Article  Google Scholar 

  36. Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251–275 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009)

    MATH  MathSciNet  Google Scholar 

  38. Wylie, W.: Some curvature pinching results for Riemannian manifolds with density. arXiv:1501.06079

Download references

Acknowledgments

The author would like to thank Guofang Wei, Peter Petersen, and Frank Morgan for their encouragement and very helpful discussions and suggestions that improved the draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Wylie.

Additional information

The author was supported in part by NSF-DMS Grant 0905527.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wylie, W. Sectional curvature for Riemannian manifolds with density. Geom Dedicata 178, 151–169 (2015). https://doi.org/10.1007/s10711-015-0050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0050-3

Keywords

Mathematics Subject Classification

Navigation