Geometriae Dedicata

, Volume 172, Issue 1, pp 351–361 | Cite as

Invariant contact structures on 7-dimensional nilmanifolds

Original Paper


In this paper we give the list of all 7-dimensional nilpotent real Lie algebras that admit a contact structure. Based on this list, we describe all 7-dimensional nilmanifolds that admit an invariant contact structure.


Nilmanifold Invariant contact structure Minimal model Nilpotent Lie algebra 

Mathematics Subject Classification

57R17 22E60 



I thank my advisors Alexander Dranishnikov and Yuli Rudyak for many useful discussions and comments on this work. I am very grateful to the referee for many useful advises and comments on this work.


  1. 1.
    Ancochea-Bermudez, J.M., Goze, M.: Classification des algebres de Lie nilpotentes complexes de dimension 7. Lie Arch. Math. 52(2), 157–185 (1989)MathSciNetGoogle Scholar
  2. 2.
    Bourbaki, N.: Lie Groups and Lie Algebras. Hermann, Paris (1975)Google Scholar
  3. 3.
    Bourgeois, F.: Odd dimensional tori are contact manifolds. Int. Math. Res. Not., no. 30, 1571–1574 (2002)Google Scholar
  4. 4.
    Carles, R.: Weight systems for nilpotent Lie algebras of dimension \(\le 7\) over complex field. Technical report, Departement de Mathematiques, Universite de Poitiers (1989)Google Scholar
  5. 5.
    Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 63, 85–124 (1948)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    de Graaf, W.A.: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra 309, 640–653 (2007)Google Scholar
  7. 7.
    Etnyre, J.: Lectures on open book decompositions and contact structures. In: Floer Homology, Gauge Theory, and Low-Dimensional Topology, 103–141, Clay Math. Proc., 5, Am. Math. Soc., Providence, RI (2006)Google Scholar
  8. 8.
    Geiges, H.: An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, 109. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  9. 9.
    Gómez, J.R., Jimenéz-Merchán, A., Khakimdjanov, Y.: Symplectic structures on the filiform Lie algebras. J. Pure Appl. Algebra 156, 15–31 (2001)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gong, M.-P.: Classification of nilpotent Lie algebras of dimension 7 over algebraically closed fields and \({\mathbb{R}}\), Ph.D thesis, University of Waterloo, (1998). 173 ppGoogle Scholar
  11. 11.
    Khakimdjanov, Yu., Goze, M., Medina, A.: Symplectic and contact structures on Lie groups. Differ. Geom. Appl. 21, 41–54 (2004)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Magnin, L.: Determination of 7-dimensional indecomposable nilpotent complex Lie algebras by adjoining a derivation to 6-dimensianal lie algebras. Algebra Represent Theory, 13(6), 723–753 (2010)Google Scholar
  13. 13.
    Malcev, A.I.: On a class of homogeneous spaces, Am. Math. Soc. Transl., 39, 33 pp. (1951)Google Scholar
  14. 14.
    McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Clarendon Press, Oxford (1998)MATHGoogle Scholar
  15. 15.
    Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math 59(2), 531–538 (1953)MathSciNetGoogle Scholar
  16. 16.
    Romdhani, M.: Classification of real and complex nilpotent Lie algebras of dimension 7. Linear Multilinear Algebra 24(2), 167–189 (1989)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Safiullina, E.N.: Classification of nilpotent Lie algebras of dimension 7. Math. Mech. Phys. 66–69, (1964)Google Scholar
  18. 18.
    Seeley, C.: Seven-dimensional nilpotent Lie algebras over the complex numbers. PhD thesis, University of Illinois at Chicago (1988)Google Scholar
  19. 19.
    Seeley, C.: Some nilpotent Lie algebras of even dimension. Bull. Austral. Math. Soc. 45, 71–77 (1992)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Seeley, C.: 7-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335, 479–496 (1993)MATHMathSciNetGoogle Scholar
  21. 21.
    Tralle, A., Oprea, J.: Symplectic Manifolds with no Kähler Structure, Lect. Notes Math. 1661, Springer, Berlin (1997)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations