Advertisement

Geometriae Dedicata

, Volume 169, Issue 1, pp 99–107 | Cite as

Lower bound of coarse Ricci curvature on metric measure spaces and eigenvalues of Laplacian

  • Yu Kitabeppu
Original paper

Abstract

In this paper,we investigate the coarse Ricci curvature on metric spaces with random walks. There exists no canonical random walk on metric space with a reference measure. However, we prove that a Bishop–Gromov inequality gives a lower bound of coarse Ricci curvature with respect to a random walk called an \(r\)-step random walk. The lower bound does not coincide with the constant corresponding to curvature in Bishop–Gromov inequality. As a corollary, we obtain a lower bound of coarse Ricci curvature with respect to an \(r\)-step random walk for a metric measure space satisfying the curvature-dimension condition. Moreover we give an important example, Heisenberg group, which does not satisfy the curvature-dimension condition for any constant but has a lower bound of coarse Ricci curvature. We also have an estimate of the eigenvalues of the Laplacian by a lower bound of coarse Ricci curvature.

Keywords

Coarse Ricci curvature Bishop–Gromov inequality Eigenvalues Laplacian The curvature-dimension condition 

Mathematics Subject Classification (2000)

51F99 53C23 58J65 53C17 

Notes

Acknowledgments

The author is grateful to Professor Nicola Gigli for pointing out Proposition 3.3,Professor Shin-ichi Ohta for helpful comments, Professor Kazuhiro Kuwae for valuable comments and Professor Takashi Shioya for reading this paper and giving useful advices. The author is partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. arXiv:1109.0222Google Scholar
  2. 2.
    Bauer, J.J.F., Shiping, L: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. arXiv: 1105.3803v1Google Scholar
  3. 3.
    Erbar, M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincar’e Probab. Stat. 46(1), 1–23 (2010) (English, with English and French summaries)Google Scholar
  4. 4.
    Gigli, N., Kuwada, K., Ohta, S.-i: Heat flow on Alexandrov spaces. arXiv:1008.1319Google Scholar
  5. 5.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN 13, 2347–2373 (2009)Google Scholar
  7. 7.
    Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. arXiv: 1103.4037v2Google Scholar
  8. 8.
    Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett 17(2), 343–356 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009). doi: 10.4007/annals.2009.169.903 CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ohta, S-i: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82(4), 805–828 (2007). doi: 10.4171/CMH/110 CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009). doi: 10.1016/j.jfa.2008.11.001 CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Savaré, G.: Gradient flows and diffusion semigroups in metric spaces under lower. C. R. Math. Acad. Sci. Paris 345(3), 151–154 (2007). doi: 10.1016/j.crma.2007.06.018 (English, with English and French summaries)
  13. 13.
    Sturm, K.T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006). doi: 10.1007/s11511-006-0002-8 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006). doi: 10.1007/s11511-006-0003-7 CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. Mathematical Society, Providence, RI (2003)Google Scholar
  16. 16.
    Villani, C.: Optimal Transport: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009)CrossRefGoogle Scholar
  17. 17.
    von Renesse, M.-K., Sturm, K.-T.: Transport inequalities. gradient estimates,en- tropy, and Ricci curvature. Comm. Pure Appl. Math. 58(7), 923–940 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations