Skip to main content
Log in

Lower bound of coarse Ricci curvature on metric measure spaces and eigenvalues of Laplacian

  • Original paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper,we investigate the coarse Ricci curvature on metric spaces with random walks. There exists no canonical random walk on metric space with a reference measure. However, we prove that a Bishop–Gromov inequality gives a lower bound of coarse Ricci curvature with respect to a random walk called an \(r\)-step random walk. The lower bound does not coincide with the constant corresponding to curvature in Bishop–Gromov inequality. As a corollary, we obtain a lower bound of coarse Ricci curvature with respect to an \(r\)-step random walk for a metric measure space satisfying the curvature-dimension condition. Moreover we give an important example, Heisenberg group, which does not satisfy the curvature-dimension condition for any constant but has a lower bound of coarse Ricci curvature. We also have an estimate of the eigenvalues of the Laplacian by a lower bound of coarse Ricci curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. arXiv:1109.0222

  2. Bauer, J.J.F., Shiping, L: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. arXiv: 1105.3803v1

  3. Erbar, M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincar’e Probab. Stat. 46(1), 1–23 (2010) (English, with English and French summaries)

    Google Scholar 

  4. Gigli, N., Kuwada, K., Ohta, S.-i: Heat flow on Alexandrov spaces. arXiv:1008.1319

  5. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN 13, 2347–2373 (2009)

    Google Scholar 

  7. Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. arXiv: 1103.4037v2

  8. Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett 17(2), 343–356 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009). doi:10.4007/annals.2009.169.903

    Article  MATH  MathSciNet  Google Scholar 

  10. Ohta, S-i: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82(4), 805–828 (2007). doi:10.4171/CMH/110

    Article  MATH  MathSciNet  Google Scholar 

  11. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009). doi:10.1016/j.jfa.2008.11.001

    Article  MATH  MathSciNet  Google Scholar 

  12. Savaré, G.: Gradient flows and diffusion semigroups in metric spaces under lower. C. R. Math. Acad. Sci. Paris 345(3), 151–154 (2007). doi:10.1016/j.crma.2007.06.018 (English, with English and French summaries)

  13. Sturm, K.T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006). doi:10.1007/s11511-006-0002-8

    Article  MATH  MathSciNet  Google Scholar 

  14. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006). doi:10.1007/s11511-006-0003-7

    Article  MATH  MathSciNet  Google Scholar 

  15. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. Mathematical Society, Providence, RI (2003)

    Google Scholar 

  16. Villani, C.: Optimal Transport: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009)

    Book  Google Scholar 

  17. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities. gradient estimates,en- tropy, and Ricci curvature. Comm. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Nicola Gigli for pointing out Proposition 3.3,Professor Shin-ichi Ohta for helpful comments, Professor Kazuhiro Kuwae for valuable comments and Professor Takashi Shioya for reading this paper and giving useful advices. The author is partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Kitabeppu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitabeppu, Y. Lower bound of coarse Ricci curvature on metric measure spaces and eigenvalues of Laplacian. Geom Dedicata 169, 99–107 (2014). https://doi.org/10.1007/s10711-013-9844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-013-9844-3

Keywords

Mathematics Subject Classification (2000)

Navigation