Geometriae Dedicata

, Volume 168, Issue 1, pp 177–196 | Cite as

A topological splitting theorem for sub-Riemannian manifolds

Original Paper


We prove an analogue of the Cheeger–Gromoll splitting theorem for sub-Riemannian manifolds with the measure contraction property instead of the nonnegativity of the Ricci curvature. If such a sub-Riemannian manifold contains a straight line, then the manifold splits diffeomorphically, where the splitting is not necessarily isometric. We prove that such a sub-Riemannian manifold containing a straight line cannot split isometrically under some typical condition in sub-Riemannian geometry. Heisenberg groups are such examples.


Sub-Riemannian manifold Measure contraction property  Splitting theorem 

Mathematics Subject Classification

53C21 (53C20 53C23) 



The author thanks Prof. Takashi Shioya for helpful advices especially giving him an idea and a method to study a splitting theorem.


  1. 1.
    Agrachev, A., Lee, P.: Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian Manifolds. Arxiv, preprint arXiv:0903.2550v2 (2009)Google Scholar
  2. 2.
    Baudoin, F., Garofalo, N.: Generalized Bochner Formulas and Ricci Lower Bounds for Sub-Riemannian Manifolds of Rank Two. Arxiv, preprint arXiv:0904.1623 (2009)Google Scholar
  3. 3.
    Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Bellaiche, A. Risler, J.J. (eds.) Sub-Riemannian Geometry, Progress in Mathematics, vol. 144, pp. 1–78. Birkhäuser, Basel (1996)Google Scholar
  4. 4.
    Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, graduate studies in mathematics, vol. 33. American Mathematical Society, Providence (2001)Google Scholar
  5. 5.
    Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)MATHMathSciNetGoogle Scholar
  6. 6.
    Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, Providence (2008). Revised reprint of the 1975 originalGoogle Scholar
  7. 7.
    Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6, 119–128 (1971/72)Google Scholar
  8. 8.
    Chitour, Y., Jean, F., Trélat, E.: Genericity results for singular curves. J. Differ. Geom. 73(1), 45–73 (2006)Google Scholar
  9. 9.
    Chitour, Y., Jean, F., Trélat, E.: Singular trajectories of control-affine systems. SIAM J. Control Optim. 47(2), 1078–1095 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Falbel, E., Jean, F.: Measures of transverse paths in sub-Riemannian geometry. J. Anal. Math. 91, 231–246 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Figalli, A., Rifford, L.: Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 20(1), 124–159 (2010)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Fukushima, M., Ōshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, de Gruyter studies in mathematics, vol. 19. Walter de Gruyter & Co., Berlin (1994)CrossRefGoogle Scholar
  13. 13.
    Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, english edn. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston (2007). Based on the 1981 French original, With appendices by Katz, M., Pansu, P., Semmes, S. Translated from the French by Sean Michael BatesGoogle Scholar
  15. 15.
    Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145(688), x+101 (2000)Google Scholar
  16. 16.
    Hebey, E.: Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, vol. 1635. Springer, Berlin (1996)Google Scholar
  17. 17.
    Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Jacquet, S.: Regularity of the sub-Riemannian distance and cut locus. In: Nonlinear Control in the Year 2000, vol. 1 (Paris), Lecture Notes in Control and Information Sciences, vol. 258, pp. 521–533. Springer, London (2001)Google Scholar
  19. 19.
    Jerison, D., Sánchez-Calle, A.: Subelliptic, second order differential operators. In: Complex Analysis, vol. III, College Park (1985–86). Lecture Notes in Mathematics, vol. 1277, pp. 46–77. Springer, Berlin (1987)Google Scholar
  20. 20.
    Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN. 2009 (13), 2347–2373 (2009)Google Scholar
  21. 21.
    Kuwae, K.: Maximum principles for subharmonic functions via local semi-Dirichlet forms. Can. J. Math. 60(4), 822–874 (2008)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kuwae, K., Shioya, T.: A topological splitting theorem for weighted Alexandrov spaces. Tohoku Math. J. (2) 63(1), 59–76 (2011) doi: 10.2748/tmj/1303219936. URL
  23. 23.
    Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)Google Scholar
  25. 25.
    Monti, R., Serra Cassano, F.: Surface measures in Carnot-Carathéodory spaces. Calc. Var. Partial Differ. Equ. 13(3), 339–376 (2001)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ohta, S.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82(4), 805–828 (2007)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Ohta, S.: Products, cones, and suspensions of spaces with the measure contraction property. J. Lond. Math. Soc. (2) 76(1), 225–236 (2007)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Ranjbar-Motlagh, A.: Poincaré inequality for abstract spaces. Bull. Aust. Math. Soc. 71(2), 193–204 (2005)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996). Translated from the 1992 Japanese original by the authorGoogle Scholar
  30. 30.
    Shiohama, K., Shioya, T., Tanaka, M.: The Geometry of Total Curvature on Complete Open Surfaces, Cambridge Tracts in Mathematics, vol. 159. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  31. 31.
    Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)MATHMathSciNetGoogle Scholar
  33. 33.
    Sturm, K.T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75(3), 273–297 (1996)MATHMathSciNetGoogle Scholar
  34. 34.
    Sturm, K.T.: Diffusion processes and heat kernels on metric spaces. Ann. Probab. 26(1), 1–55 (1998)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Sturm, K.T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Sturm, K.T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Watanabe, M.: Ends of metric measure spaces with nonnegative Ricci curvature. In: Noncommutativity and Singularities, Advanced Studies in Pure Mathematics, vol. 55, pp. 335–343. Mathematical Society of Japan, Tokyo (2009)Google Scholar
  38. 38.
    Zhang, H., Zhu, X.: Ricci Curvature on Alexandrov spaces and Rigidity Theorems. Arxiv, preprint arXiv:0912.3190 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations