Geometriae Dedicata

, Volume 167, Issue 1, pp 239–244 | Cite as

Approximations of periodic functions to \(\mathbb R ^n\) by curvatures of closed curves

  • J. Mostovoy
  • R. Sadykov
Original Paper


We show that for any \(n\) real periodic functions \(f_1,\ldots , f_n\) with the same period, such that \(f_i>0\) for \(i<n\), and a real number \(\varepsilon >0\), there is a closed curve in \(\mathbb R ^{n+1}\) with curvatures \(\kappa _1, \ldots , \kappa _n\) such that \(\left| \kappa _{i(t)}-f_{i(t)}\right|<\varepsilon \) for all \(i\) and \(t\). This does not hold for parametric families of closed curves in \(\mathbb R ^{n+1}\).


Curvatures Frenet frame \(h\)-principle 

Mathematics Subject Classification (2000)

Primary: 530A4 Secondary: 53C21 53C42 


  1. 1.
    Cartan, É.: Riemannian Geometry in an Orthogonal Frame. World Scientific Publishing Co., Inc., River Edge (2001)CrossRefGoogle Scholar
  2. 2.
    Czarnecki, M.: Hadamard foliations of \(\mathbb{H}^{n}\). Differential Geom. Appl. 20, 357–365 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dahlberg, B.: The converse of the four vertex theorem. Proc. Am. Math. Soc. 133, 2131–2135 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Eliashberg, Y.M., Mishachev, N.M.: Holonomic approximation and Gromov’s h-principle, Essays on geometry and related topics, Vol. 1, 2, 271–285, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, (2001)Google Scholar
  5. 5.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)MATHGoogle Scholar
  6. 6.
    Ghomi, M.: \(h\)-principles for curves and knots of constant curvature. Geom. Dedicata 127, 19–35 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gromov, M.: Partial Differential Relations. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  8. 8.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  9. 9.
    Klingenberg, W.: A Course in Differential Geometry. Springer, Berlin (1978)CrossRefMATHGoogle Scholar
  10. 10.
    Monterde, J.: Curves with constant curvature ratios. Bol. Soc. Mat. Mexicana 13, 177–186 (2007)MathSciNetMATHGoogle Scholar
  11. 11.
    Shapiro, B.Z., Shapiro, M.Z.: On the number of connected components in the space of closed nondegenerate curves in \(S^n\). Bull. Am. Math. Soc. 25, 75–79 (1991)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.CINVESTAVMexico, D.F.Mexico

Personalised recommendations