Geometriae Dedicata

, Volume 167, Issue 1, pp 215–231 | Cite as

Curvature-direction measures of self-similar sets

Original Paper


We obtain fractal Lipschitz–Killing curvature-direction measures for a large class of self-similar sets \(F\) in \(\mathbb{R }^{d}\). Such measures jointly describe the distribution of normal vectors and localize curvature by analogues of the higher order mean curvatures of differentiable sub-manifolds. They decouple as independent products of the unit Hausdorff measure on \(F\) and a self-similar fibre measure on the sphere, which can be computed by an integral formula. The corresponding local density approach uses an ergodic dynamical system formed by extending the code space shift by a subgroup of the orthogonal group. We then give a remarkably simple proof for the resulting measure version under minimal assumptions.


Self-similar set Lipschitz–Killing curvature-direction measure Fractal curvature measure Minkowski content 

Mathematics Subject Classification (2000)

Primary: 28A80, 28A75, 37A99 Secondary: 28A78, 53C65 


  1. 1.
    Bandt, C., Graf, S.: Self-similar sets. VII. A characterization of self-similar fractals with positive Hausdorff measure. Proc. Am. Math. Soc. 114(4), 995–1001 (1992)MathSciNetMATHGoogle Scholar
  2. 2.
    Billingsley, P: Convergence of probability measures. In: Wiley Series in Probability and Statistics: Probability and Statistics, 2nd ed., Wiley, New York (1999) A Wiley-Interscience PublicationGoogle Scholar
  3. 3.
    Doob, J.L.: Measure theory, Graduate Texts in Mathematics, vol. 143. Springer, New York (1994)CrossRefGoogle Scholar
  4. 4.
    Falconer, K.J.: On the Minkowski measurability of fractals. Proc. Am. Math. Soc. 123(4), 1115–1124 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)MATHGoogle Scholar
  6. 6.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ferry, S.: When \(\epsilon \)-boundaries are manifolds, Fund. Math. 90(3), 199–210 (1975/76)Google Scholar
  8. 8.
    Fu, J.H.G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52(4), 1025–1046 (1985)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gatzouras, D.: Lacunarity of self-similar and stochastically self-similar sets. Trans. Am. Math. Soc. 352(5), 1953–1983 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Graf, S.: On Bandt’s tangential distribution for self-similar measures. Monatsh. Math. 120(3–4), 223–246 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    John, E.: Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kesseböhmer, M., Kombrink, S.: Fractal curvature measures and Minkowski content for one-dimensional self-conformal sets. Adv. Math. (2010), Arxiv 1012.5399 (to appear)Google Scholar
  13. 13.
    Lapidus, M.L., Pomerance, C.: The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. Lond. Math. Soc. (3) 66(1), 41–69 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mauldin, R.D., Urbański, M.: Graph directed Markov systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, (2003)Google Scholar
  15. 15.
    Pokorny, D.: On critical values of self-similar sets. Houston J. Math (to appear) (2011) Arxiv 1101.1219v3Google Scholar
  16. 16.
    Rataj, J.: Convergence of total variation of curvature measures. Monatsh. Math. 153(2), 153–164 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rataj, J., Winter, S.: On volume and surface area of parallel sets. Indiana Univ. Math. J. 59(5), 1661–1685 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rataj, J., Zähle, M.: Normal cycles of Lipschitz manifolds by approximation with parallel sets. Differ. Geom. Appl. 19(1), 113–126 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Rataj, J., Zähle, M.: General normal cycles and Lipschitz manifolds of bounded curvature. Ann. Glob. Anal. Geom. 27(2), 135–156 (2005)CrossRefMATHGoogle Scholar
  20. 20.
    Rataj, J., Zähle, M.: Curvature densities of self-similar sets. Indiana Univ. Math. J. (to appear) (2010) Arxiv 1009.6162Google Scholar
  21. 21.
    Schneider, R.: Parallelmengen mit Vielfachheit und Steiner-Formeln. Geom. Dedic. 9(1), 111–127 (1980)CrossRefMATHGoogle Scholar
  22. 22.
    Schief, A.: Separation properties for self-similar sets. Proc. Am. Math. Soc. 122(1), 111–115 (1994)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Klatt, M.A., Schaller, F.M., Hoffmann, M.J.F., Kleppmann, N., Armstrong, P., Inayat, A., Hug, D., Reichelsdorfer, M., Peukert, W., Schwieger, W., Mecke, K.: Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23(22–23), 2535–2553 (2011)Google Scholar
  24. 24.
    Winter, S.: Curvature measures and fractals. Diss. Math. (Rozprawy Mat.) 453, 66 (2008)Google Scholar
  25. 25.
    Winter, S.: Curvature bounds for neighborhoods of self-similar sets. Comment. Math. Univ. Carolin. 52(2), 205–226 (2011) Arxiv 1010.2032Google Scholar
  26. 26.
    Winter, S., Zähle, M.: Fractal curvature measures of self-similar sets. Adv. Geom. (2012) Arxiv 1007.0696Google Scholar
  27. 27.
    Zähle, M.: Integral and current representation of Federer’s curvature measures. Arch. Math. (Basel) 46(6), 557–567 (1986)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zähle, M.: Lipschitz–Killing curvatures of self-similar random fractals. Trans. Am. Math. Soc. 363(5), 2663–2684 (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Friedrich Schiller University JenaJenaGermany

Personalised recommendations