Geometriae Dedicata

, Volume 162, Issue 1, pp 191–229 | Cite as

Harmonic maps of foliated Riemannian manifolds

  • Sorin Dragomir
  • Andrea Tommasoli
Original paper


We study \({({\mathcal{F}}, {\mathcal{G}})}\)-harmonic maps between foliated Riemannian manifolds \({(M, {\mathcal{F}}, g)}\) and \({(N, {\mathcal{G}}, h)}\) i.e. smooth critical points ϕ : MN of the functional \({E_T (\phi ) = \frac{1}{2} \int_M \| d_T \phi \|^2 \,d \, v_g}\) with respect to variations through foliated maps. In particular we study \({({\mathcal{F}}, {\mathcal{G}})}\)-harmonic morphisms i.e. smooth foliated maps preserving the basic Laplace equation Δ B u =  0. We show that CR maps of compact Sasakian manifolds preserving the Reeb flows are weakly stable \({({\mathcal{F}}, {\mathcal{G}})}\)-harmonic maps. We study \({({\mathcal{F}}, {\mathcal{G}}_0 )}\)-harmonic maps into spheres and give foliated analogs to Solomon’s (cf., J Differ Geom 21:151–162, 1985) results.


Foliated Riemannian manifold \({({\mathcal{F}}, {\mathcal{G}})}\)-harmonic map \({({\mathcal{F}}, {\mathcal{G}})}\)-harmonic morphism Reeb flow 

Mathematics Subject Classification

53C12 58E20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barletta E., Dragomir S.: On transversally holomorphic maps of Kählerian foliations. Acta Appl. Math. 54, 121–134 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barletta E., Dragomir S., Urakawa H.: Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J. 50(2), 719–746 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baird, P., Wood, J.C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monographs, N.S., vol. 29. Clarendon Press, Oxford (2003)Google Scholar
  4. 4.
    Blair D.E.: Contact Manifolds in Riemannian Geometry, vol. 509. Springer, Berlin (1976)Google Scholar
  5. 5.
    Chiang Y.-J., Wolak R.A.: Transversally biharmonic maps between foliated Riemannian manifolds. Int. J. Math. 19(8), 981–996 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dragomir S.: On pseudohermitian immersions between strictly pseudoconvex CR manifolds. Am. J. Math. 117(1), 169–202 (1995)MATHCrossRefGoogle Scholar
  7. 7.
    Dragomir S.: Cauchy-Riemann geometry and subelliptic theory. Lecture Notes of Seminario Interdisciplinare di Matematica 7, 121–162 (2008)Google Scholar
  8. 8.
    Dragomir S., Wood J.C.: Sottovarietà minimali ed applicazioni armoniche. Quaderni dell’U.M.I., vol. 35. Pitagora Editrice, Bologna (1989)Google Scholar
  9. 9.
    Dragomir S., Ornea L.: Locally conformal Kaehler geomery. In: Bass, H., Oesterlé, J., Weinstein, A. (eds.) Progress in Mathematics, vol. 155, Birkhäuser, Boston (1998)Google Scholar
  10. 10.
    Dragomir S., Tomassini G.: Differential geometry and analysis on CR manifolds. In: Bass, H., Oesterlé, J., Weinstein, A. (eds.) Progress in Mathematics, vol. 246, Birkhäuser, Boston (2006)Google Scholar
  11. 11.
    Eells J., Lemaire L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Fuglede B.: Harnack sets and openness of harmonic morphisms. Math. Ann. 241, 181–186 (1979)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. In: Berger, M., Echmann, B., Varadhan, S.R.S. (eds.) Grundlehren der mathematischen Wissenscahften, 2nd edn, vol. 224, Springer, Berlin (1983)Google Scholar
  14. 14.
    Haefliger A.: Variétées feuilletées. Ann. Scuola Norm. Sup. Pisa 16(4), 367–397 (1962)MathSciNetMATHGoogle Scholar
  15. 15.
    Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19(2), 215–229 (1979)MathSciNetMATHGoogle Scholar
  16. 16.
    Jost J., Xu C.-J.: Subelliptic harmonic maps. Trans. Am. Math. Soc. 350, 4633–4649 (1998)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Jung, M.J., Jung, S.D.: On transversally harmonic maps of foliated Riemannian manifolds. arXiv:1109.3932 (2011)Google Scholar
  18. 18.
    Kacimi-Alaoui A.E.: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. Compositio Math. 73(1), 57–106 (1990)MathSciNetMATHGoogle Scholar
  19. 19.
    Kacimi Alaoui A.E., Gallego Gomez E.: Applications harmoniques feuilletées. Illinois J. Math. 40(1), 115–122 (1996)MathSciNetMATHGoogle Scholar
  20. 20.
    Kamber F., Tondeur P.: Harmonic foliations, in harmonic maps, proceedings, New Orleans 1980. In: Knill, R.J., Kalka, M., Sealey, H.C.J. (eds.) Lecture Notes in Mathematics, vol. 949, Springer, Berlin (1982)Google Scholar
  21. 21.
    Kamber F., Tondeur P.: Infinitesimal automorphisms and second variation of the energy for harmonic foliations. Tohoku Math. J. 34, 525–538 (1982)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Kamber, F., Tondeur, P.: Foliations and metrics. In: Proceedings 1981–1982 Year in Differential Geometry. University of Maryland, Progr. Math., vol. 32. Birkhäuser, Boston, pp. 415–431 (1983)Google Scholar
  23. 23.
    Kamber F., Tondeur P.: De Rham-Hodge theory for Riemannian foliations. Math. Ann. 277, 415–431 (1987)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. I, 1963, vol. II. Wiley, New York (1969)Google Scholar
  25. 25.
    Konderak J.J.: On sections of fibre bundles which are harmonic maps. Bull. Math. Soc. Sci. Math. Roumanie 90(4), 341–352 (1999)MathSciNetGoogle Scholar
  26. 26.
    Konderak J.J., Wolak R.A.: Transversally harmonic maps between manifolds with Riemannian foliations. Q. J. Math. 54, 335–354 (2003)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Konderak J.J., Wolak R.A.: Some remarks on transversally harmonic maps. Glasgow J. Math. 50(1), 1–16 (2008)MathSciNetMATHGoogle Scholar
  28. 28.
    Lichnerowicz, A.: Applications harmoniques et variétés Kählériennes. Symp. Math. III, Bologna, pp. 341–402 (1970)Google Scholar
  29. 29.
    Nishikawa S., Ramachandran M., Tondeur P.: The heat equation for Riemannian foliations. Trans. A.M.S. 319(2), 619–630 (1990)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Nishikawa S., Tondeur P.: Transversal infinitesimal automorphisms for harmonic Kähler foliations. Tohoku Math. J. 40(4), 599–611 (1988)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Pak H.K., Park J.H.: Transversal harmonic transformations for Riemannian foliations. Ann. Glob. Anal. Geom. 30(1), 97–105 (2006)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Park E., Richardson K.: The basic Laplacian of a Riemannian foliation. Am. J. Math. 118, 1249–1275 (1996)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Smith R.T.: The second variation formula for harmonic mappings. Proc. A.M.S. 47(1), 229–236 (1975)MATHCrossRefGoogle Scholar
  34. 34.
    Solomon B.: Harmonic maps to spheres. J. Differ. Geom. 21, 151–162 (1985)MATHGoogle Scholar
  35. 35.
    Tondeur P.: Foliations of Riemannian Manifolds. Springer, New York (1988)CrossRefGoogle Scholar
  36. 36.
    Tondeur P., Toth G.: On transversal infinitesimal automorphisms for harmonic foliations. Geometriae Dedicata 24, 229–236 (1987)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Tondeur P., Vanhecke L.: Transversally symmetric Riemannian foliations. Tohoku Math. J. 42(3), 307–317 (1990)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Tsukada K.: Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds. Compositio Math. 93, 1–22 (1994)MathSciNetMATHGoogle Scholar
  39. 39.
    Urakawa, H.: Variational problems over strongly pseudoconvex CR manifolds. In: Gu, C.H., Hu, H.S., Xin, Y.L. (eds.) Differential Geometry, Proceedings of the Symposium in Honour of Prof. Su Buchin on his 90th Birthday, Shanghai, China, 17–23 September 1991, pp. 233–242. World Scientific, Singapore (1993)Google Scholar
  40. 40.
    Vaisman I.: Generalized Hopf manifolds. Geometriae Dedicata 13, 231–255 (1982)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Vaisman I.: A Schwartz lemma for complex surfaces. In: Rassias, Th.M. (ed.) Global Analysis—Analysis on Manifolds, Teubner Texte zur Math, vol. 57, pp. 305–323. Teubner-Verlag, Leipzig (1983)Google Scholar
  42. 42.
    Wells, R.O.: Differential analysis on complex manifolds. Graduate Texts in Mathematics, vol. 65. Springer, New York (1980)Google Scholar
  43. 43.
    Wiegmink G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303(2), 325–344 (1995)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi della BasilicataPotenzaItaly
  2. 2.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations