Geometriae Dedicata

, Volume 156, Issue 1, pp 31–47 | Cite as

An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms

  • Luis J. Alías
  • S. Carolina García-Martínez
Original Paper


In this paper we derive a sharp estimate for the supremum of the scalar curvature (or, equivalently, the infimum of the squared norm of the second fundamental form) of a constant mean curvature hypersurface with two principal curvatures immersed into a Riemannian space form of constant curvature. Our results will be an application of the generalized Omori-Yau maximum principle, following the approach by Pigola et al. (Memoirs Am Math Soc 822, 2005).


Constant mean curvature Scalar curvature Ricci curvature Second fundamental form Omori-Yau maximum principle 

Mathematics Subject Classification (2000)

53C40 53C42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alías L.J., de Almeida S.C., Brasil A. Jr.: Hypersurfaces with constant mean curvature and two principal curvatures in \({\mathbb{S}^{n+1}}\) . An. Acad. Brasil. Cienc. 76, 489–497 (2004)MATHMathSciNetGoogle Scholar
  2. 2.
    Alías L.J., García-Martínez S.C.: On the scalar curvature of constant mean curvature hypersurfaces in space forms. J. Math. Anal. Appl. 363, 579–587 (2010)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cartan E.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. 17, 177–191 (1938)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen B.-Y.: Geometry of Submanifolds. Pure and Applied Mathematics, vol. 22. Marcel Dekker, Inc., New York (1973)Google Scholar
  5. 5.
    Cheng Q.-M.: The rigidity of the Clifford torus \({\mathbb{S}^{1}(\sqrt{1/n})\times\mathbb{S}^{n-1}(\sqrt{(n-1)/n})}\) . Comm. Math. Helv. 71, 60–69 (1996)CrossRefMATHGoogle Scholar
  6. 6.
    do Carmo M., Dajczer M.: Rotation hypersurfaces in spaces of constant curvature. Trans. Am. Math. Soc. 277, 685–709 (1983)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Hasanis T., Savas-Halilaj A., Vlachos T.: Complete minimal hypersurfaces in a unit sphere. Monatsh. Math. 145, 301–305 (2005)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hasanis T., Vlachos T.: A pinching theorem for minimal hypersurfaces in a sphere. Arch. Math. 75, 469–471 (2000)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Hoffman D.A.: Surfaces of constant mean curvature in manifolds of constant curvature. J. Differ. Geom. 8, 161–176 (1973)MATHGoogle Scholar
  10. 10.
    Klotz, T., Osserman, R.: Complete surfaces in E 3 with constant mean curvature. Comment. Math. Helv. 41, 313–318 (1966/1967)Google Scholar
  11. 11.
    Levi-Civita T.: Famiglia di superfici isoparametriche nell’ordinario spazio Euclideo. Att. Accad. naz Lincie Rend. Cl. Sci. Fis. Mat. Nat. 26, 355–362 (1937)MATHGoogle Scholar
  12. 12.
    Li H.: Global rigidity theorems of hypersurfaces. Ark. Math. 35, 327–351 (1997)CrossRefMATHGoogle Scholar
  13. 13.
    Nomizu K., Smyth B.: A formula of Simons’ type and hypersurfaces with constant mean curvature. J. Differ. Geom. 3, 367–377 (1969)MATHMathSciNetGoogle Scholar
  14. 14.
    Omori H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Otsuki T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Am. J. Math. 92, 145–173 (1970)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Perdomo O.: Ridigity of minimal hypersurfaces of spheres with two principal curvatures. Arch. Math. 82, 180–184 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Memoirs Am. Math. Soc. 822 (2005)Google Scholar
  18. 18.
    Ratto A., Rigoli M., Setti A.G.: On the Omori-Yau maximum principle and its applications to differential equations and geometry. J. Funct. Anal. 134, 486–510 (1995)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Segre B.: Famiglie di ipersuperficie isoparametriche negli spazi euclidei ad un qualunque numero di dimensioni. Att. Accad. naz Lincie Rend. Cl. Sci. Fis. Mat. Nat. 27, 203–207 (1938)MATHGoogle Scholar
  20. 20.
    Shu S., Han A.Y.: Hypersurfaces with two principal curvatures in a real space form. Int. Math. Forum 5, 163–173 (2010)MATHMathSciNetGoogle Scholar
  21. 21.
    Smyth B., Xavier F.: Efimov’s theorem in dimension greater than two. Invent. Math. 90, 443–450 (1987)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Tam L.-F., Zhou D.: Stability properties for the higher dimensional catenoid in \({\mathbb R^{n+1}}\). Proc. Am. Math. Soc. 137, 3451–3461 (2009)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Tribuzy R.: Hopf’s method and deformations of surfaces preserving mean curvature. An. Acad. Brasil. Cienc. 50, 447–450 (1978)MathSciNetGoogle Scholar
  24. 24.
    Wang Q.: Rigidity of Clifford minimal hypersurfaces. Monatsh. Math. 140, 163–167 (2003)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Wei G.: Complete hypersurfaces with constant mean curvature in a unit sphere. Monatsh. Math. 149, 251–258 (2006)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Yau S.T.: Harmonic function on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Luis J. Alías
    • 1
  • S. Carolina García-Martínez
    • 1
  1. 1.Departamento de MatemáticasUniversidad de MurciaEspinardo, MurciaSpain

Personalised recommendations