Geometriae Dedicata

, Volume 154, Issue 1, pp 133–160 | Cite as

Einstein homogeneous bisymmetric fibrations

  • Fátima Araújo
Original Paper


We consider a homogeneous fibration G/LG/K, with symmetric fiber and base, where G is a compact connected semisimple Lie group and L has maximal rank in G. We suppose the base space G/K is isotropy irreducible and the fiber K/L is simply connected. We investigate the existence of G-invariant Einstein metrics on G/L such that the natural projection onto G/K is a Riemannian submersion with totally geodesic fibers. These spaces are divided in two types: the fiber K/L is isotropy irreducible or is the product of two irreducible symmetric spaces. We classify all the G-invariant Einstein metrics with totally geodesic fibers for the first type. For the second type, we classify all these metrics when G is an exceptional Lie group. If G is a classical Lie group we classify all such metrics which are the orthogonal sum of the normal metrics on the fiber and on the base or such that the restriction to the fiber is also Einstein.


Einstein metric Bisymmetric fibration Totally geodesic fiber Generalized symmetric space Casimir operator 

Mathematics Subject Classification (2010)

53C25 53C30 53C20 53C35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseevsky D., Dotti I., Ferraris C.: Homogeneous Ricci positive 5-manifolds. Pacific J. Math. 175(1), 1–12 (1996)MathSciNetGoogle Scholar
  2. 2.
    Araújo, F.: Einstein Homogeneous Riemannian fibrations. PhD thesis of The University of Edinburgh, arXiv:0905.3143v2 [math.DG] (2008)Google Scholar
  3. 3.
    Araújo F.: Some Einstein homogeneous Riemannian fibrations. Differ. Geom. Appl. 28, 241–263 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Bröcker T., Dieck T.: Representations of compact lie groups. Springer, Berlin (1985)MATHGoogle Scholar
  5. 5.
    Besse A.: Einstein manifolds. Springer, Berlin (1987)MATHGoogle Scholar
  6. 6.
    Boyer C.P., Galicki K.: On Sasakian-Einstein geometry. Internat. J. Math. 11, 873–909 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Böhm C., Kerr M.M.: Low-dimensional homogeneous Einstein metrics. Trans. Am. Math. Soc. 358(4), 1455–1468 (2005)CrossRefGoogle Scholar
  8. 8.
    Castellani L., Romans L.J., Warner N.P.: A classification of compactifying solutions for d = 11 supergravity. Nuclear Phys. 241, 429–462 (1984)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dickinson W., Kerr M.M.: The geometry of compact homogeneous spaces with two isotropy summands. Ann. Glob. Anal. Geom. 34, 329–350 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces, Mathematics 80. Academic Press, London (1978)Google Scholar
  11. 11.
    Humphreys J.E.: Introduction to Lie Algebras and Representation Theory. Springer, Berlin (1972)MATHGoogle Scholar
  12. 12.
    Jensen G.R.: Homogeneous Einstein spaces of dimension 4. J. Diff. Geom. 3, 309–349 (1969)MATHGoogle Scholar
  13. 13.
    Jensen G.R.: Einstein metrics on principal fiber bundles. J. Diff. Geom. 8, 599–614 (1973)MATHGoogle Scholar
  14. 14.
    Jimenez J.A.: Riemannian 4-symmetric spaces. Trans. Am. Math. Soc. 306(2), 715–734 (1988)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Nikonorov Y.G., Rodionov D.E.: Compact 6-dimensional homogeneous Einstein manifolds. Dokl. Math. RAR 336, 599–601 (1999)MathSciNetGoogle Scholar
  16. 16.
    Onishchik L.A., Vinberg E.B.: Lie Groups and Algebraic Groups, Springer Series in Soviet Mathematics. Springer, Berlin (1990)Google Scholar
  17. 17.
    Panyushev D.: Isotropy representations, eingenvalues of a casimir element and commutative lie subalgebras. J. Lond. Math. Soc. 64(2), 61–80 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Wang, M.Y.: Einstein Metrics from Symmetry and Bundle Constructions, Surveys in Differential Geometry, VI: Essays on Einstein Manifolds, pp. 287–325. International Press (1999)Google Scholar
  19. 19.
    Wolf J.A., Gray A.: Homogeneous spaces defined by lie group automorphisms I, II. J. Diff. Geom. 2, 77–114, 115–159 (1968)Google Scholar
  20. 20.
    Wang M.Y., Ziller W.: On normal homogeneous Einstein manifolds. Ann. Sci. l’E.N.S. 18(4), 563–633 (1985)MathSciNetMATHGoogle Scholar
  21. 21.
    Wang M.Y., Ziller W.: Existence and non-existence of homogeneous Einstein metrics. Invent. Math. 84, 177–194 (1986)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Wang M.Y., Ziller W.: Einstein metrics on principal torus bundles. J. Diff. Geom. 31, 215–248 (1990)MathSciNetMATHGoogle Scholar
  23. 23.
    Yau S.T.: On the Ricci curvature of a compact Kähler Manifold and the Complex Monge-Ampère Equation I. Comm. Pure Appl. Math. 31, 339–411 (1978)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ziller W.: Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259, 351–358 (1982)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of MathematicsThe University of EdinburghEdinburghUK

Personalised recommendations