Geometriae Dedicata

, Volume 153, Issue 1, pp 73–105 | Cite as

Computing \({{\rm SL}(2,\mathbb{C})}\) central functions with spin networks

Original Paper


Let \({G={\rm SL}(2,\mathbb{C})}\) and \({{\tt F}_r}\) be a rank r free group. Given an admissible weight \({\vec{\lambda}}\) in \({\mathbb{N}^{3r-3}}\), there exists a class function defined on \({{\rm Hom}({\tt F}_r,G)}\) called a central function. We show that these functions admit a combinatorial description in terms of graphs called trace diagrams. We then describe two algorithms (implemented in Mathematica) to compute these functions.


Spin network Trace diagram Character variety Central function 

Mathematics Subject Classification (2000)

14R20 57M07 16W22 05C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baez J.C.: Spin network states in gauge theory. Adv. Math. 117, 253–272 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carter J., Flath D., Saito M.: The Classical and Quantum 6j-Symbols., Mathematical Notes, No. 43. Princeton University Press, Princeton (1995)Google Scholar
  3. 3.
    Cvitanovic P.: Group Theory: Birdtracks, Lies, and Exceptional Groups. Princeton University Press, Princeton, NJ (2008)Google Scholar
  4. 4.
    Drensky V.: Defining relations for the algebra of invariants of 2 × 2 matrices. Algebr. Represent. Theor. 6(2), 193–214 (2003) MR MR1977929 (2004b:16034)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129. Springer, New York, 1991, A first course, Readings in Mathematics. MR MR1153249 (93a:20069)Google Scholar
  6. 6.
    Goldman W.M.: Trace coordinates on fricke spaces of some simple hyperbolic surfaces. In: Papadopoulos, A. (ed.) Handbook of Teichmüller Theory II, EMS Publishing House, Zürich (2008)Google Scholar
  7. 7.
    Kauffman L.: Knots and Physics, Series on Knots and Everything, vol. 1. World Scientific, River Edge, NJ (1991)Google Scholar
  8. 8.
    Lawton, S.: Minimal affine coordinates for \({{\rm SL}(3,\mathbb{C})}\) character varieties of free groups, accepted Journal of Algebra (Computational Section) (2008)Google Scholar
  9. 9.
    Lawton, S.: Mathematica notebook for tensorial computation of central functions, available at, (2009)
  10. 10.
    Lawton S., Peterson E.: Spin networks and \({{\rm SL}(2,\mathbb{C})}\)-character varieties. In: Papadopoulos, A. (ed.) Handbook of Teichmüller Theory II, EMS Publishing House, Zürich (2009)Google Scholar
  11. 11.
    Major S.A.: A spin network primer. Am. J. Phys. 67, 972–980 (1999)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ. 3, 369–377 (1963/1964). MR MR0179268 (31 #3516)Google Scholar
  13. 13.
    Peterson, E.: Trace diagrams, representations, and low-dimensional topology. Ph.D. thesis, University of Maryland, College Park, (2006)Google Scholar
  14. 14.
    Peterson, E.: Mathematica notebook for recurrence computations of central functions, available at, (2009)
  15. 15.
    Sikora, A.S.: SLn-character varieties as spaces of graphs. Trans. Amer. Math. Soc. 353(7), 2773–2804 (2001) (electronic). MR MR1828473 (2003b:57004)Google Scholar
  16. 16.
    Stedman G.E.: Diagrammatic Techniques in Group Theory. Cambridge University Press, Cambridge (1990)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University of Texas, Pan AmericanEdinburgUSA
  2. 2.Johns Hopkins University Applied Physics LabLaurelUSA

Personalised recommendations