Geometriae Dedicata

, Volume 151, Issue 1, pp 259–267 | Cite as

Riemannian 3-metrics with a generic Codazzi Ricci tensor

  • Giovanni Calvaruso
Original Paper


We determine a large family of explicit metrics, defined on open subsets of \({\mathbb R ^3}\) , having a Codazzi Ricci tensor and three distinct Ricci eigenvalues.


Einstein-like metrics Codazzi Ricci tensor Conformally flat metrics 

Mathematics Subject Classification (2000)

53C20 53C25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbena E., Garbiero S., Vanhecke L.: Einstein-like metrics on three-dimensional Riemannian homogeneous manifolds. Simon Stevin 66, 173–182 (1992)MathSciNetMATHGoogle Scholar
  2. 2.
    Bueken P.: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures ρ 1 = ρ 2ρ 3. J. Math. Phys. 37, 4062–4075 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bueken P., Vanhecke L.: Three- and four-dimensional Einstein-like manifolds and homogeneity. Geom. Dedicata 75, 123–136 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Calvaruso G.: Three-dimensional Ivanov-Petrova manifolds. J. Math. Phys. 50, 1–12 (2009) 063509MathSciNetCrossRefGoogle Scholar
  5. 5.
    Derdzinski A.: Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor. Math. Z. 172, 273–280 (1980)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    De Turck D.M.: The equation of prescribed Ricci curvature. Bull. Am. Math. Soc. 3(1), 701–704 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    De Turck D.M.: Existence of metrics with prescribed ricci curvature: local theory. Invent. Math. 65, 179–207 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Turck D.M., Goldschmidt H.: Metrics with prescribed Ricci curvature of constant rank. I. The integrable case. Adv. Math. 145, 1–97 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Eisenhart L.P.: Riemannian Geometry. Princeton University Press, Princeton (1926)MATHGoogle Scholar
  10. 10.
    Gray A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7, 259–280 (1978)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ρ 1 = ρ 2 ≠ ρ 3. Nagoya Math. J. 132, 1–36 (1993)MathSciNetMATHGoogle Scholar
  12. 12.
    Kowalski O., Prüfer F.: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Math. Ann. 300, 17–28 (1994)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lee J.M., Parker T.H.: The Yamabe problem. Bull. Amer. Math. Soc. 17, 37–91 (1987)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pedersen H., Tod P.: The ledger curvature conditions and D’Atri geometry. Diff. Geom. Appl. 11, 155–162 (1999)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom. 20, 479–495 (1984)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica “E. De Giorgi”Università del SalentoLecceItaly

Personalised recommendations