Skip to main content
Log in

Conjugacy classes in Möbius groups

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \({\mathbb H^{n+1}}\) denote the n + 1-dimensional (real) hyperbolic space. Let \({\mathbb {S}^{n}}\) denote the conformal boundary of the hyperbolic space. The group of conformal diffeomorphisms of \({\mathbb {S}^{n}}\) is denoted by M(n). Let M o (n) be its identity component which consists of all orientation-preserving elements in M(n). The conjugacy classification of isometries in M o (n) depends on the conjugacy of T and T −1 in M o (n). For an element T in M(n), T and T −1 are conjugate in M(n), but they may not be conjugate in M o (n). In the literature, T is called real if T is conjugate in M o (n) to T −1. In this paper we classify real elements in M o (n). Let T be an element in M o (n). Corresponding to T there is an associated element T o in SO(n + 1). If the complex conjugate eigenvalues of T o are given by \({\{e^{i\theta_j}, e^{-i\theta_j}\}, 0 < \theta_j \leq \pi, j=1,\ldots,k}\) , then {θ1, . . . , θ k } are called the rotation angles of T. If the rotation angles of T are distinct from each-other, then T is called a regular element. After classifying the real elements in M o (n) we have parametrized the conjugacy classes of regular elements in M o (n). In the parametrization, when T is not conjugate to T −1 , we have enlarged the group and have considered the conjugacy class of T in M(n). We prove that each such conjugacy class can be induced with a fibration structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlfors L.V.: Möbius Transformations and Clifford Numbers. Differential Geometry and Complex Analysis, pp. 65–73. Springer, Berlin (1985)

    Google Scholar 

  2. Birkhoff G.D.: The restricted problem of three bodies. Rend. Circ. Mat. Palermo 39, 265–334 (1915)

    Article  Google Scholar 

  3. Cao C., Waterman P.L.: Conjugacy Invariants of Möbius Groups. Quasiconformal Mappings and Analysis (Ann Arbor, MI, 1995), pp. 109–139. Springer, New York (1998)

    Google Scholar 

  4. Chen S.S., Greenberg L.: Hyperbolic Spaces,Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers), pp. 49–87. Academic Press, New York (1974)

    Google Scholar 

  5. Devaney R.L.: Reversible diffeomorphisms and flows. Trans. Am. Math. Soc. 218, 89–113 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falbel E., Wentworth R.: On products of isometries of hyperbolic space. Topol. Appl. 156(13), 2257–2263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feit, W., Zuckerman, G.J.: Reality properties of conjugacy classes in spin groups and symplectic groups. Algebraists’ homage: papers in ring theory and related topics (New Haven, Conn., 1981). Contemp. Math., 13, Am. Math. Soc., Providence, R.I. pp. 239–253 (1982)

  8. Gongopadhyay K., Kulkarni R.S.: z-Classes of isometries of the hyperbolic space. Conform Geom. Dyn. 13, 91–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenberg L.: Discrete subgroups of the Lorentz group. Math. Scand. 10, 85–107 (1962)

    MathSciNet  MATH  Google Scholar 

  10. Knüppel F., Nielsen K.: Products of involutions in O +(V). Linear Algebra Appl. 94, 217–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kulkarni, R.S.: Conjugacy classes in M(n). Conformal Geometry (Bonn, 1985/1986), 41–64, Aspects Math., E12, Vieweg, Braunschweig,(1988)

  12. Kulkarni R.S., Raymond F.: 3-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differ. Geom. 21(2), 231–268 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Moeglin C., Vignéras M.-F., Waldspurger J.-L.: Correspondences de Howe sur un corps p-adique, Lecture Notes in Mathematics 1291, Springer, Berlin (1987)

  14. Moser J.K., Webster S.M.: Normal forms for real surfaces in \({\mathbb {C}^{2}}\) near complex tangents and hyperbolic surface transformations. Acta Math. 150(3–4), 255–296 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ratcliffe J.G.: Foundation of Hyperbolic Manifolds, Graduate Texts in Mathematics 149. Springer, Berlin (1994)

    Google Scholar 

  16. Short I.: Reversible maps in isometry groups of spherical, Euclidean and hyperbolic space. Math. Proc. R. Ir. Acad. 108(1), 33–46 (2008)

    Article  MathSciNet  Google Scholar 

  17. Short I., O’Farrell A.G., Lávička R.: Reversible maps in the group of quaternionic Möbius transformations. Math. Proc. Cambridge Philos. Soc. 143(1), 57–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Singh A., Thakur M.: Reality properties of conjugacy classes in algebraic groups. Israel J. Math. 165, 1–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Singh A., Thakur M.: Reality properties of conjugacy classes in G 2. Israel J. Math. 145, 157–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tiep P.H., Zalesski A.E.: Real conjugacy classes in algebraic groups and finite groups of Lie type. J. Group Theory 8, 291–315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wada M.: Conjugacy invariants of Möbius transformations. Complex Var. Theory Appl. 15(2), 125–133 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Wonenburger M.J.: Transformations which are products of two involutions. J. Math. Mech. 16, 327–338 (1966)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Gongopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gongopadhyay, K. Conjugacy classes in Möbius groups. Geom Dedicata 151, 245–258 (2011). https://doi.org/10.1007/s10711-010-9531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-010-9531-6

Keywords

Mathematics Subject Classification (2000)

Navigation