Geometriae Dedicata

, Volume 151, Issue 1, pp 175–186 | Cite as

Boundedness of certain automorphism groups of an open manifold

Original Paper


It is shown that certain diffeomorphism or homeomorphism groups with no restriction on support of an open manifold (being the interior of a compact manifold) are bounded. It follows that these groups are uniformly perfect. In order to characterize the boundedness several conditions on automorphism groups of an open manifold are introduced. In particular, it is shown that the commutator length diameter of the automorphism group \({\mathcal{D}(M)}\) of a portable manifold M is estimated by 4.


Open manifold Bounded group Conjugation-invariant norm Group of diffeomorphisms Commutator length Perfectness Uniform perfectness 

Mathematics Subject Classification (2000)

22E65 57R50 57S05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe K., Fukui K.: Commutators of C -diffeomorphisms preserving a submanifold. J. Math. Soc. Japan 61, 427–436 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Anderson R.D.: On homeomorphisms as products of a given homeomorphism and its inverse. In: Fort, M. (eds) Topology of 3-manifolds, pp. 231–237. Prentice-Hall, Englewood Cliffs, NJ (1961)Google Scholar
  3. 3.
    Banyaga A.: The structure of classical diffeomorphism groups, Mathematics and its Applications, vol. 400. Kluwer Academic Publishers Group, Dordrecht (1997)Google Scholar
  4. 4.
    Bavard C.: Longeur stables des commutateurs. Enseign. Math. 37, 109–150 (1991)MathSciNetMATHGoogle Scholar
  5. 5.
    Burago, D., Ivanov, S., Polterovich, L.: Conjugation invariant norms on groups of geometric origin, Advanced Studies in Pures Math. 52, Groups of Diffeomorphisms, pp. 221–250 (2008)Google Scholar
  6. 6.
    Denjoy A.: Sur les courbes definies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11(9), 333–375 (1932)MATHGoogle Scholar
  7. 7.
    Edwards R.D., Kirby R.C.: Deformations of spaces of imbeddings. Ann. Math. 93, 63–88 (1971)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Eisenbud D., Hirsch U., Neumann W.: Transverse foliations of Seifert bundles and self homeomorphisms of the circle. Comment. Math. Helv. 56, 639–660 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fukui K.: Homologies of the group Diff\({^\infty(\mathbb{R}^n, 0)}\) and its subgroups. J. Math. Kyoto Univ. 20, 475–487 (1980)MathSciNetMATHGoogle Scholar
  10. 10.
    Hirsch M.W.: Differential Topology, Graduate Texts in Mathemetics, vol. 33. Springer, New York (1976)Google Scholar
  11. 11.
    Kotschick, D.: Stable length on stable groups, Advanced Studies in Pures Math. 52, Groups of Diffeomorphisms, pp. 401–413 (2008)Google Scholar
  12. 12.
    Lech J., Rybicki T.: Groups of C r,s-diffeomorphisms related to a foliation. Banach Center Publ. 76, 437–450 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ling W.: Translations on \({M\times\mathbb{R}}\). Amer. Math. Soc. Proc. Symp. Pure Math. 32(2), 167–180 (1978)Google Scholar
  14. 14.
    Mather J.N.: The vanishing of the homology of certain groups of homeomorphisms. Topology 10, 297–298 (1971)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mather J.N.: Commutators of diffeomorphisms. Comment. Math. Helv. I 49, 512–528 (1974)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Mather J.N.: Commutators of diffeomorphisms. Comment. Math. Helv.II 50, 33–40 (1975)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Mather J.N.: Commutators of diffeomorphisms. Comment. Math. Helv. III 60, 122–124 (1985)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    McDuff D.: The lattice of normal subgroups of the group of diffeomorphisms or homeomorphisms of an open manifold. J. London Math. Soc. 18(2), 353–364 (1978)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rybicki T.: The identity component of the leaf preserving diffeomorphism group is perfect. Monatsh. Math. 120, 289–305 (1995)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Rybicki T.: Commutators of diffeomorphisms of a manifold with boundary. Annales Pol. Math. 68, 199–210 (1998)MathSciNetMATHGoogle Scholar
  21. 21.
    Rybicki T.: On the group of diffeomorphisms preserving a submanifold. Demonstr. Math. 31, 103–110 (1998)MathSciNetMATHGoogle Scholar
  22. 22.
    Schweitzer, P.A.: Normal subgroups of diffeomorphism and homeomorphism groups of \({\mathbb{R}^n}\) and other open manifolds, preprint (2009)Google Scholar
  23. 23.
    Thurston W.: Foliations and groups of diffeomorphisms. Bull. Amer. Math. Soc. 80, 304–307 (1974)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Tsuboi T. et al.: On the group of foliation preserving diffeomorphisms. In: Walczak, P. (eds) Foliations 2005, pp. 411–430. World scientific, Singapore (2006)CrossRefGoogle Scholar
  25. 25.
    Tsuboi, T.: On the uniform perfectness of diffeomorphism groups, Advanced Studies in Pures Math. 52, Groups of Diffeomorphisms, pp. 505–524 (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Applied MathematicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations