Geometriae Dedicata

, Volume 147, Issue 1, pp 177–185 | Cite as

Real map germs and higher open book structures

Original Paper


The paper focusses on the existence of higher open book structures defined by real map germs \({\psi : (\mathbb{R}^m ,0) \to (\mathbb{R}^p ,0)}\) such that Sing \({\psi \cap \psi^{-1}(0) \subset \{0\}}\). A general existence criterion is proved, with view to weighted-homogeneous maps.


Real singularities Milnor fibration Links Open book decompositions Stratifications 

Mathematics Subject Classification (2000)

32S55 57Q45 32C40 32S60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A’Campo N.: Le Nombre de Lefschetz d’une Monodromie. Indag. Math. 35, 113–118 (1973)MathSciNetGoogle Scholar
  2. 2.
    Church P.T., Lamotke K.: Non-trivial polynomial isolated singularities. Indag. Math. 37, 149–154 (1975)MathSciNetGoogle Scholar
  3. 3.
    Durfee A.: Fibered knots and algebraic singularities. Topology 13, 47–59 (1974)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    dos Santos, R.: Uniform (M)-condition and strong Milnor fibrations. In: Brasselet, J.P., et al. (eds.) Singularities II: Geometric and Topological Aspects, Proc. of the Conference in honour of Lê Dũng Tráng. Cuernavaca, Mexico (2007), Contemp. Math. 475, 43–59 (2008)Google Scholar
  5. 5.
    dos Santos, R., Tibăr, M.: Real map germs and higher open books, manuscript, December 7, preprint arXiv:0801.3328 (2007)Google Scholar
  6. 6.
    Etnyre, J.B.: Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology, pp. 103–141, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI (2006)Google Scholar
  7. 7.
    Jacquemard, A.: Thèse 3ème cycle Université de Dijon (1982)Google Scholar
  8. 8.
    Jacquemard, A.: Fibrations de Milnor pour des applications réelles. Boll. Un. Mat. Ital. B(7)3, no. 3, 591–600 (1989)Google Scholar
  9. 9.
    Lê, D.T.: Some remarks on relative monodromy, real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 397–403. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)Google Scholar
  10. 10.
    Looijenga E.J.N.: A note on polynomial isolated singularities. Indag. Math. 33, 418–421 (1971)MathSciNetGoogle Scholar
  11. 11.
    Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud. 61, Princeton (1968)Google Scholar
  12. 12.
    Oka, M.: Non-degenerate mixed functions, manuscriptGoogle Scholar
  13. 13.
    Ruas M.A.S., dos Santos R.: Real Milnor fibrations and C-regularity. Manuscr. Math. 117(2), 207–218 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ruas, M.A.S., Seade, J., Verjovsky, A.: On real singularities with a Milnor fibration. In: Trends in Singularities, pp. 191–213, Trends Math., Birkhäuser, Basel (2002)Google Scholar
  15. 15.
    Seade J.: On Milnor’s fibration theorem for real and complex singularities in geometry and topology, pp. 127–158. World Sci. Publ., Hackensack, NJ (2007)Google Scholar
  16. 16.
    Tibăr, M. (2007) Polynomials and Vanishing Cycles. Cambridge Tracts in Mathematics, 170, Cambridge University Press, Cambridge, xii+253Google Scholar
  17. 17.
    Winkelnkemper H.E.: Manifolds as open books. Bull. Amer. Math. Soc 79, 45–51 (1973)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Mathématiques, UMR-CNRS 8524Université de Lille 1Villeneuve d’AscqFrance

Personalised recommendations