Advertisement

Geometriae Dedicata

, Volume 147, Issue 1, pp 131–138 | Cite as

A quadratic bound on the number of boundary slopes of essential surfaces with bounded genus

  • Tao Li
  • Ruifeng Qiu
  • Shicheng Wang
Original Paper
  • 46 Downloads

Abstract

Let M be an orientable 3-manifold with ∂M a single torus. We show that the number of boundary slopes of immersed essential surfaces with genus at most g is bounded by a quadratic function of g. In the hyperbolic case, this was proved earlier by Hass et al.

Keywords

Boundary slope Essential surface 

Mathematics Subject Classification (2000)

57M50 57N10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams C.: Volumes of N-cusped hyperbolic 3-manifolds. J. London Math. Soc. 38, 555–565 (1988)MATHMathSciNetGoogle Scholar
  2. 2.
    Agol I.: Bounds on exceptional Dehn filling. Geom. Topol. 4, 431–449 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baker M.: On boundary slopes of immersed incompressible surfaces. Ann. Inst. Fourier 46(5), 1443–1449 (1996)MATHMathSciNetGoogle Scholar
  4. 4.
    Baker M., Cooper D.: A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3-manifolds. J. Topol. 1(3), 603–642 (2008)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cao C., Robert Meyerhoff G.: The orientable cusped hyperbolic 3-manifolds of minimum volume. Invent. Math. 146, 451–478 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Culler M., Shalen P.: Bounded, separating, incompressible surfaces in knot manifolds. Invent. Math. 75, 537–545 (1984)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gordon, C.M.A.: Small surfaces and Dehn filling. In: Proceedings of the Kirbyfest, pp 177–199. Berkeley, CA (1998) (Geom. Topol. Monogr., 2 (1999))Google Scholar
  8. 8.
    Hass J.: Minimal surfaces in manifolds with S 1 actions and the simple loop conjecture for Seifert fiber spaces. Proc. Am. Math. Soc. 99, 383–388 (1987)MATHMathSciNetGoogle Scholar
  9. 9.
    Hass J., Rubinstein H., Wang S.: Boundary slopes of immersed surfaces in 3-manifolds. J. Differ. Geom. 52, 303–325 (1999)MATHMathSciNetGoogle Scholar
  10. 10.
    Hass J., Wang S., Zhou Q.: On finiteness of the number of boundary slopes of immersed surfaces in 3-manifolds. Proc. Am. Math. Soc. 130(6), 1851–1857 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hatcher A.: On the boundary curves of incompressible surfaces. Pacific J. Math. 99, 373–377 (1982)MATHMathSciNetGoogle Scholar
  12. 12.
    Jaco, W.: Lectures on three-manifold topology. CBMS Regional Conference Series in Mathematics 43 (1977)Google Scholar
  13. 13.
    Lackenby M.: Attaching handlebodies to 3-manifolds. Geom. Topol. 6, 889–904 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Li T.: Immersed essential surfaces in hyperbolic 3-manifolds. Comm. Anal. Geom. 10, 275–290 (2002)MATHMathSciNetGoogle Scholar
  15. 15.
    Li T.: Boundary curves of surfaces with the 4-plane property. Geom. Topol. 6, 609–647 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Oertel U.: Boundaries of π1-injective surfaces. Topol. Appl. 78, 215–234 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Qiu R.: Incompressible surfaces in handlebodies and closed 3-manifolds of Heegaard genus 2. Proc. Am. Math. Soc. 128(10), 3091–3097 (2000)MATHCrossRefGoogle Scholar
  18. 18.
    Qiu R., Wang S.: Handle additions producing essential surfaces. Pacific J. Math. 229(1), 233–255 (2007)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Scharlemann M., Wu Y.-Q.: Hyperbolic manifolds and degenerating handle additions. J. Austral. Math. Soc. Ser. A 55(1), 72–89 (1993)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhang, Q.: Boundary slopes of immersed surfaces in Haken manifolds. J. Knot Theory Ramif (to appear)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of MathematicsBoston CollegeChestnut HillUSA
  2. 2.Department of MathematicsEast China Normal UniversityShanghaiChina
  3. 3.Department of MathematicsPeking UniversityBeijingChina

Personalised recommendations