Geometriae Dedicata

, Volume 139, Issue 1, pp 299–312 | Cite as

Infinitesimal variations of Hodge structure at infinity

  • Javier Fernandez
  • Eduardo Cattani
Original Paper


By analyzing the local and infinitesimal behavior of degenerating polarized variations of Hodge structure the notion of infinitesimal variation of Hodge structure at infinity is introduced. It is shown that all such structures can be integrated to polarized variations of Hodge structure and that, conversely, all are limits of infinitesimal variations of Hodge structure at finite points. As an illustration of the rich information encoded in this new structure, some instances of the maximal dimension problem for this type of infinitesimal variation are presented and contrasted with the “classical” case of IVHS at finite points.


Hodge theory Degenerating variations of Hodge structure Infinitesimal variation of Hodge structure 

Mathematics Subject Classification (2000)

14D07 32G20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlson J.: Bounds on the dimension of variations of Hodge structure. Trans. Am. Math. Soc. 294(1), 45–64 (1986)MATHCrossRefGoogle Scholar
  2. 2.
    Carlson J., Toledo T.: Rigidity of harmonic maps of maximum rank. J. Geom. Anal. 3(2), 99–140 (1993)MATHMathSciNetGoogle Scholar
  3. 3.
    Carlson, J., Cattani, E., Kaplan, A.: Mixed Hodge structures and compactifications of Siegel’s space (preliminary report), Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 77–105Google Scholar
  4. 4.
    Carlson J., Green M., Griffiths P., Harris J.: Infinitesimal variations of Hodge structure. I. Compos. Math. 50(2–3), 109–205 (1983)MATHMathSciNetGoogle Scholar
  5. 5.
    Carlson J., Donagi R.: Hypersurface variations are maximal. I. Invent. Math. 89(2), 371–374 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cattani, E., Fernandez, J.: Asymptotic Hodge theory and quantum products. Advances in algebraic geometry motivated by physics, Lowell, MA, 2000. Contemporary Mathematics, vol. 276, pp. 115–136. Ame. Math. Soc., Providence, RI (2001). Also, arXiv:math.AG/0011137Google Scholar
  7. 7.
    Cattani, E., Kaplan, A.: Degenerating variations of Hodge structure. Astérisque, vol. 9(179–180), pp. 67–96, 1989. Actes du Colloque de Théorie de Hodge, Luminy, (1987)Google Scholar
  8. 8.
    Cattani E., Kaplan A., Schmid W.: Degeneration of Hodge structures. Ann. Math. 123(3), 457–535 (1986)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Griffiths, P. (eds): Topics in transcendental algebraic geometry. Annals of Mathematics Studies Vol. 106. Princeton University Press, Princeton, NJ (1984Google Scholar
  10. 10.
    Kato, K, Usui, S.: Logarithmic Hodge structures and classifying spaces. The arithmetic and geometry of algebraic cycles, Banff, AB, 1998. Amer. Math. Soc., pp. 115–130. Providence, RI, (2000)Google Scholar
  11. 11.
    Mayer R.: Coupled contact systems and rigidity of maximal dimensional variations of Hodge structure. Trans. AMS. 352(5), 2121–2144 (1999) Also, arXiv:alg-geom/9712001CrossRefGoogle Scholar
  12. 12.
    Schmid W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Instituto BalseiroUniversidad Nacional de Cuyo–C.N.E.A.BarilocheRepública Argentina
  2. 2.Department of MathematicsUniversity of MassachusettsAmherstUSA

Personalised recommendations