Geometriae Dedicata

, 139:83 | Cite as

The Hermite-Einstein equation and stable principal bundles (an updated survey)



This is a survey of work done in the past two decades relating a basic equation of general relativity and quantum field theory with the theory of stable vector bundles and stable principal bundles, as well as providing moduli spaces for such objects, and compactifying them.


Vector bundle Principal bundle Connection Stability Moduli space Hermite-Einstein equation Antiselfdual connection 

Mathematics Subject Classification (2000)

14D22 14D20 


  1. 1.
    Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balaji V.: Principal bundles on projective varieties and the Donaldson-Uhlenbeck compactification. J. Differ. Geom. 76(3), 351–398 (2007)MATHMathSciNetGoogle Scholar
  3. 3.
    Balaji V., Parameswaran A.J.: Semistable principal bundles.II. Positive characteristics. Transform. Groups 8, 3–36 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Biswas, I., Gómez, T.: Higgs fields and flat connections on a principal bundle over a compact Kähler manifold. In: Algebraic Groups and Homogeneous Spaces, pp. 65–82. Tata Institute of Fundamental Research Studies in Mathematics, Narosa Publishing House, (2007)Google Scholar
  5. 5.
    Biswas, I., Gómez, T.: Connections and Higgs fields on a principal bundle. Ann. Glob. Anal. Geom. 33, 19–46 (2008)MATHCrossRefGoogle Scholar
  6. 6.
    Corlette K.: Flat G-bundles with canonical metrics. J. Differ. Geom. 28(3), 361–382 (1988)MATHMathSciNetGoogle Scholar
  7. 7.
    Donaldson S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom. 18, 269–277 (1983)MATHMathSciNetGoogle Scholar
  8. 8.
    Donaldson S.K.: Twisted harmonic maps and the self-duality equations. Proc. Lond. Math. Soc. (3) 55(1), 127–131 (1987)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. Oxford Mathematical Monographs. Oxford University Press, New York (1990)Google Scholar
  10. 10.
    Faltings G.: Moduli-stacks for bundles on semistable curves. Math. Ann. 304, 489–515 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Faltings G.: Algebraic loop groups and moduli spaces of bundles. J. Eur. Math. Soc. 5, 41–68 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gieseker D.: On the moduli of vector bundles on an algebraic surface. Ann. Math. 106, 45–60 (1977)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gómez, T., Langer, A., Schmitt, A., Sols, I.: Moduli spaces for principal bundles in arbitrary characteristic. Preprint Math. AG/0506511 (2005)Google Scholar
  14. 14.
    Gómez, T., Langer, A., Schmitt, A., Sols, I.: Moduli spaces for principal bundles in large characteristic. Proceedings of International Workshop on Teichmüller Theory and Moduli Problems. Allahabad, India (2006)Google Scholar
  15. 15.
    Gómez T., Sols I.: Stability of conic bundles. Int. J. Math. 11, 1027–1055 (2000)MATHCrossRefGoogle Scholar
  16. 16.
    Gómez, T., Sols, I.: Stable tensors and moduli space of orthogonal sheaves. Math. AG/0103150Google Scholar
  17. 17.
    Gómez, T., Sols, I.: Projective moduli space of semistable principal sheaves for a reductive group. Le Matematiche 15, 437–446 (2000). Conference in Honor of Silvio Greco (April 2001)Google Scholar
  18. 18.
    Gómez T., Sols I.: Moduli space of principal sheaves over projective varieties. Ann. Math. (2) 161(2), 1037–1092 (2005)MATHCrossRefGoogle Scholar
  19. 19.
    Gómez, T. Sols, I.: Stable Higgs G-sheaves. Rev. Mat. Iberoam. 24, 703–719 (2008)Google Scholar
  20. 20.
    Heinloth, J.: Semistable reduction for G-bundles on curves. J. Algebraic Geom. 17, 167–183 (2008)MATHMathSciNetGoogle Scholar
  21. 21.
    Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Huybrechts D., Lehn M.: The geometry of moduli spaces of sheaves, Aspects of Mathematics E31. Vieweg, Braunschweig (1997)Google Scholar
  23. 23.
    Hyeon D.: Principal bundles over a projective scheme. Trans. Am. Math. Soc. 354, 1899–1908 (2002)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Reprint of the 1969 original. Wiley Classics Library. A Wiley-Interscience Publication, xvi+468 pp. Wiley, New York (1996)Google Scholar
  25. 25.
    Kobayashi S.: Differential Geometry of Complex Vector Bundles. Princeton University Press (1987)Google Scholar
  26. 26.
    Langer, A.: Semistable sheaves in positive characteristic. Ann. Math. (2) 159, 251–276 (2004). Addendum: Ann. Math. (2) 160, 1211–1213 (2004)Google Scholar
  27. 27.
    Langer A.: Moduli spaces of sheaves in mixed characteristic. Duke Math. J. 124, 571–86 (2004)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Langton S.G.: Valuative criteria for families of vector bundles on algebraic varieties. Ann. Math. 101(2), 88–110 (1975)MathSciNetGoogle Scholar
  29. 29.
    Maruyama, M.: Moduli of stable sheaves, I and II. J. Math. Kyoto Univ. (17), 91–126 (1977); 18 (1978), 557–614Google Scholar
  30. 30.
    Misner, Ch., Thorne, K., Wheeler J.A.: Gravitation. Freeman and Co (1973)Google Scholar
  31. 31.
    Mumford, D.: Projective invariants of projective structures and applications. 1963 Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pp. 526–530. Inst. Mittag-Leffler, Djursholm (1963)Google Scholar
  32. 32.
    Narasimhan M.S., Seshadri C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. 82(2), 540–567 (1965)MathSciNetGoogle Scholar
  33. 33.
    Nitsure N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62(2), 275–300 (1991)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Ramanathan A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Ramanathan, A.: Moduli for principal bundles over algebraic curves: I and II. Proc. Indian Acad. Sci. (Math. Sci.), 106 301–328, 421–449 (posthumous publication of the 1976 PhD thesis) (1996)Google Scholar
  36. 36.
    Ramanathan A., Subramanian S.: Einstein-Hermitian connections on principal bundles and stability.J. Reine Angew. Math. 390, 21–31 (1988)MATHMathSciNetGoogle Scholar
  37. 37.
    Schmitt, A.H.W.: Projective moduli for Hitchin pairs. Int. J. Math. 9(1) 107–118 (1998). Erratum: 11(no. 4)589 (2000)Google Scholar
  38. 38.
    Schmitt A.H.W.: Singular principal bundles over higher-dimensional manifolds and their moduli spaces. Int. Math. Res. Notes 23, 1183–1209 (2002)CrossRefGoogle Scholar
  39. 39.
    Schmitt A.H.W.: A universal construction for moduli spaces of decorated vector bundles over curves. Transform. Groups 9(2), 167–209 (2004)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Schmitt A. H.W.: A closer look at semistability for singular principal bundles. Int. Math. Res. Notes 62, 3327–3366 (2004)CrossRefGoogle Scholar
  41. 41.
    Schmitt, A.H.W.: Geometric invariant theory and decorated principal bundles. In: Zürich Lectures in Advanced Mathematics, viii +389 pp. European Mathematical Society, Zürich (20008)Google Scholar
  42. 42.
    Seshadri C.S.: Space of unitary vector bundles on a compact Riemann surface. Ann. Math. 85(2), 303–336 (1967)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Simpson C.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc. 1(4), 867–918 (1988)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Simpson C.: Higgs bundles and local systems. Publ. Math. I.H.E.S. 75, 5–95 (1992)MATHMathSciNetGoogle Scholar
  45. 45.
    Simpson C.: Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. I.H.E.S. 79, 47–129 (1994)MATHMathSciNetGoogle Scholar
  46. 46.
    Simpson C.: Moduli of representations of the fundamental group of a smooth projective variety II. Publ. Math. I.H.E.S. 80, 5–79 (1995)MATHGoogle Scholar
  47. 47.
    Sorger C.: Thêta-charactéristiques des courbes tracées sur une surface lisse. J. Reine Angew. Math. 435, 83–118 (1993)MATHMathSciNetGoogle Scholar
  48. 48.
    Tian G.: Gauge theory and calibrated geometry, I. Ann. Math. 151(2), 193–268 (2000)MATHGoogle Scholar
  49. 49.
    Uhlenbeck K.K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys. 83, 11–29 (1982)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Uhlenbeck K.K.: Connections with L p bounds on curvature. Commun. Math. Phys. 83, 31–42 (1982)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.ICMAT (CSIC-UAM-UC3M-UCM)MadridSpain
  2. 2.Facultad de Ciencias MatemáticasUniversidad Complutense de MadridMadridSpain

Personalised recommendations