Advertisement

Geometriae Dedicata

, Volume 139, Issue 1, pp 5–14 | Cite as

Actions of the groups \({\mathbb C}\) and \({\mathbb C^*}\) on Stein varieties

  • César Camacho
  • Bruno Scárdua
Original Paper

Abstract

In this paper we present recent results concerning global aspects of \({\mathbb C}\) and \({\mathbb C^*}\) -actions on Stein surfaces. Our approach is based on a byproduct of techniques from Geometric Theory of Foliations (holonomy, stability), Potential theory (parabolic Riemann surfaces, Riemann-Koebe Uniformization theorem) and Several Complex Variables (Hartogs’ extension theorems, Theory of Stein spaces). Our main motivation comes from the original works of M. Suzuki and Orlik-Wagreich. Some of their results are extended to a more general framework. In particular, we prove some linearization theorems for holomorphic actions of \({\mathbb C}\) and \({\mathbb C^*}\) on normal Stein analytic spaces of dimension two. We also add a list of questions and open problems in the subject. The underlying idea is to present the state of the art of this research field.

Keywords

Stein manifold Holomorphic flow Quasi-homogeneous singularity Foliation 

Mathematics Subject Classification (2000)

32E10 32S65 37F75 32M25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.: Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires, Mir (1980)Google Scholar
  2. 2.
    Camacho C., Sad P.: Invariant varieties through singularities of holomorphic vector fields. Ann. Math. 115(3), 579–595 (1982)MathSciNetGoogle Scholar
  3. 3.
    Camacho C., Scárdua B.: Dicritical holomorphic flows on Stein manifolds. Archiv der Mathematik 89, 339–349 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Camacho C., Movasati H., Sad P.: Fibered Neighborhoods of Complex Curves in Surfaces. J. Geom. Anal. 13(1), 55–66 (2003)MATHMathSciNetGoogle Scholar
  5. 5.
    Camacho, C., Movasati, H., Scárdua, B.: \({\mathbb C^*}\) -Actions on Stein analytic spaces with isolated singularities. Pre-publication, arXiv:0709.0547 (math. CV)Google Scholar
  6. 6.
    Godbillon, C.: Feuilletages. Études géométriques. With a preface by G. Reeb. Progress in Mathematics, vol. 98. Birkhäuser Verlag, Basel (1991)Google Scholar
  7. 7.
    Gunning R.C., Rossi H.: Analytic functions of several complex variables. Prentice Hall, N.J. (1965)MATHGoogle Scholar
  8. 8.
    Gunning R.C.: Introduction to holomorphic functions of several variables, vol. III. Homological theory. The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA (1990)Google Scholar
  9. 9.
    Laufer H.B.: Normal two-dimensional singularities. Princeton University Press, Princeton, N.J. (1971)MATHGoogle Scholar
  10. 10.
    Orlik P.: Seifert manifolds. Springer Lecture Notes in Mathematics 291, 1–155 (1970)Google Scholar
  11. 11.
    Orlik, P. Wagreich: Isolated singularities of algebraic surfaces with \({\mathbb C^*}\) -action. Ann. Math. 93, 205–228 (1971)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Rentschler R.: Operations du groupe additif sur le pla affine. C.R.A.S. t.267, 384–387 (1968)MathSciNetGoogle Scholar
  13. 13.
    Scárdua B.: On the classification of holomorphic flows and Stein surfaces. Complex Variables and Elliptic Equations 52(1), 79–83 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Scárdua B.: On the classification of \({\mathbb C^n}\) actions and Stein manifolds. Indian Journal of Mathematics 50(1), 125–148 (2008)MATHMathSciNetGoogle Scholar
  15. 15.
    Seade, J.: On the topology of isolated singularities in analytic spaces. Progress in Mathematics, vol. 241. Birkhäuser Verlag, Basel (2006)Google Scholar
  16. 16.
    Suzuki M.: Sur les opérations holomorphes de \({\mathbb C}\) et de \({\mathbb C^*}\) sur un espace de Stein. Séminaire Norguet, Springer Lect. Notes 670, 80–88 (1977a)Google Scholar
  17. 17.
    Suzuki M.: Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes. Ann. Sci. Éc. Norm. Sup. 4e série t.10, 517–546 (1977b)Google Scholar
  18. 18.
    Wagreich, P.: The structure of quasihomogeneous singularities. Singularities, Part 2, pp. 593–611. Arcata, California (1981)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.IMPA-Estrada D. CastorinaRio de JaneiroBrazil
  2. 2.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations