Geometriae Dedicata

, Volume 138, Issue 1, pp 1–12 | Cite as

Diameter preserving bijections between Grassmann spaces over Bezout domains

  • Li-Ping Huang
Original Paper


Let R, S be Bezout domains. Assume that n is an integer ≥ 3, 1 ≤ k ≤ n − 2. Denoted by \({\mathbb{G}_k(_RR^n)}\) the k-dimensional Grassmann space on \({_RR^n}\). Let \({\varphi: \mathbb{G}_k(_RR^n)\rightarrow \mathbb{G}_k(_SS^n)}\) be a map. This paper proves the following are equivalent: (i) \({\varphi}\) is an adjacency preserving bijection in both directions. (ii) \({\varphi}\) is a diameter preserving bijection in both directions. Moreover, Chow’s theorem on Grassmann spaces over division rings is extended to the case of Bezout domains: If \({\varphi: \mathbb{G}_k(_RR^n)\rightarrow \mathbb{G}_k(_SS^n)}\) is an adjacency preserving bijection in both directions, then \({\varphi}\) is induced by either a collineation or the duality of a collineation.


Grassmann space Bezout domain Adjacency Diameter Preserving Projective space Collineation 

Mathematics Subject Classification (2000)

51A10 51A05 51M35 16D40 06C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amitsur S.A.: Remarks on principal ideal rings. Osaka Math. J. 15, 59–69 (1963)MathSciNetMATHGoogle Scholar
  2. 2.
    Bartolone C., Franco F. Di.: A remark on the projectivities of the projective line over a commutative ring. Math. Z. 169, 23–29 (1979)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Blunck A., Havlicek H.: On bijections that preserve complementarity of subspaces. Discrete Math. 301, 46–56 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brehm U., Greferath M., Schmidt S.E.: Projective geometry on modular lattices. In: Buekenhout, F.(eds) Handbook of Incidence Geometry, Chapter 21, Elsevier, Amsterdam (1995)Google Scholar
  5. 5.
    Brehm U.: Representation of homomorphisms between submodule lattices. Resultate Math. 12, 62–70 (1987)MathSciNetMATHGoogle Scholar
  6. 6.
    Brehm, U.: Representation of sum preserving mappings between submodule lattices by R-balanced mappings, manuscript (1984)Google Scholar
  7. 7.
    Cohn P.M.: Free Ideal Rings and Localization in General Rings. Cambridge University Press, Cambridge (2006)MATHCrossRefGoogle Scholar
  8. 8.
    Cohn P.M.: Free Rings and Their Relations. Academic Press, London (1985)MATHGoogle Scholar
  9. 9.
    Chow W.L.: On the geometry of algebraic homogeneous spaces. Ann. Math. 50, 32–67 (1949)MATHCrossRefGoogle Scholar
  10. 10.
    Dieudonné, J.: La Géométrie des Groupes Classiques, Seconde Édition. Springer-Verlag (1963)Google Scholar
  11. 11.
    Faure C.A.: Morphisms of projective spaces over rings. Adv. Geom. 4, 19–31 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Greferath M.: A geometric approach to free left modues over right Bezout domains. Geometriae Dedicata 60, 219–224 (1996)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Havlicek H.: Chow’s theorem for linear spaces. Discrete Math. 208/209, 319–324 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hua L.K.: A theorem on matrices over a sfield and its applications. Acta Math. Sinica 1, 109–163 (1951)Google Scholar
  15. 15.
    Huang L.P.: Geometry of Matrices over Ring. Science Press, Beijing (2006)Google Scholar
  16. 16.
    Huang W.L.: Adjacency preserving transformations of Grassmann spaces. Abh. Math. Sem. Univ. Hamburg 68, 65–77 (1998)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Lashkhi A.: Harmonic maps over rings. Georgian Math. J. 4(1), 41–64 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Pankov M.: Chow’s theorem and projective polarities. Geometriae Dedicata 107, 17–24 (2004)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Pankov M.: Transformations of Grassmannians and automorphisms of classical groups. J. Geom. 75, 132–150 (2002)MathSciNetMATHGoogle Scholar
  20. 20.
    Rashid L.E.R.: Projection geometry over rings. Appl. Math. Comput. 130, 5–10 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Veldkamp F.D.: Geometry over rings. In: Buekenhout, F.(eds) Handbook of Incidence Geometry, Elsevier, Amsterdam (1995)Google Scholar
  22. 22.
    Wan Z.X.: Geometry of Matrices. World Scientific, Singapore (1996)MATHCrossRefGoogle Scholar
  23. 23.
    Zabavsky B.V.: Diagonaliztion of matrices. Matematychni Studii 23(1), 3–10 (2005)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Mathematics and Computing ScienceChangsha University of Science and TechnologyChangshaChina

Personalised recommendations