Geometriae Dedicata

, Volume 135, Issue 1, pp 211–217 | Cite as

Local Lipschitz geometry of real weighted homogeneous surfaces

  • Lev Birbrair
  • Alexandre Fernandes
Original Paper


We compute Hölder Complexes, i.e. the complete bi-Lipschitz invariants, for germs of real weighed homogeneous algebraic or semialgebraic surfaces.


Hoelder Complexes Singularities Metric properties of semialgebraic sets 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birbrair L.: Local bi-Lipschitz classification of 2-dimensional semialgebraic sets. Houston J. Math. 25(3), 453–472 (1999)MATHMathSciNetGoogle Scholar
  2. 2.
    Birbrair L., Fernandes A.: Metric theory of semialgebraic curves. Rev. Mat. Complut. 13(2), 369–382 (2000)MATHMathSciNetGoogle Scholar
  3. 3.
    Birbrair, L., Fernandes, A.: Inner metric geometry of complex algebraic surfaces with isolated singulaities. Comm. Pure Appl. Math. (to appear)Google Scholar
  4. 4.
    Birbrair, L., Fernandes, A., Neumann, W.D.: Bi-Lipschitz geometry of weighted homogeneous surface singularities. Math. Ann. (to appear)Google Scholar
  5. 5.
    Kurdyka, K.: On a subanalytic stratification satisfying a Whitney property with exponent 1. Real algebraic geometry (Rennes, 1991), pp. 316–322. Lecture Notes in Math., 1524. Springer, Berlin (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal do CearáFortalezaBrasil

Personalised recommendations