Geometriae Dedicata

, Volume 133, Issue 1, pp 155–168 | Cite as

Riemannian foliations admitting transversal conformal fields

Original Paper


Let \({(M, g_M, \mathcal {F})}\) be a closed, connected Riemannian manifold with a foliation \({\mathcal {F}}\) of codimension q and a bundle-like metric g M . We study the relationship between several infinitesimal automorphisms. Moreover under the some curvature condition, if M admits a transversal conformal field, then \({\mathcal {F}}\) is transversally isometric to the action of a finite subgroup of O(q) acting on the q-sphere of constant curvature.


Infinitesimal automorphisms Generalized Lichnerowicz-Obata theorem 

Mathematics Subject Classification (2000)

53C20 57R30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez López, J.A.: The basic component of the mean curvature of Riemannian foliations. Ann. Global Anal. Geom. 10, 179–194 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Domínguez, D.: A tenseness theorem for Riemannian foliations. C. R. Acad. Sci., Ser. I 320, 1331–1335 (1995)MATHGoogle Scholar
  3. 3.
    Jung, S.D.: The first eigenvalue of the transversal Dirac operator. J. Geom. Phys. 39, 253–264 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Jung, S.D.: Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form. J. Geom. Phys. 57, 1239–1246 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kamber, F.W., Tondeur, Ph.: Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, Tulane, Dec. 1980, Lecture Notes in Math. vol. 949, Springer-Verlag, New-York pp. 87–121 (1982)Google Scholar
  6. 6.
    Kamber, F.W., Tondeur, Ph.: Infinitesimal automorphisms and second variation of the energy for harmonic foliations. Tohoku Math. J. 34, 525–538 (1982)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lee, J., Richardson, K.: Lichnerowicz and Obata theorems for foliations. Pacific J. Math. 206, 339–357 (2002)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Lichnerowicz, A.: Geometrie des Groupes des Transformationes. Travaux et Recherches Mathématiques III. Dunod, Paris (1958)Google Scholar
  9. 9.
    March, P., Min-Oo, M., Ruh, E.A.: Mean curvature of Riemannian foliations. Can. Math. Bull. 39, 95–105 (1996)MATHMathSciNetGoogle Scholar
  10. 10.
    Min-Oo, M., Ruh, E.A., Tondeur, Ph.: Transversal curvature and tautness for Riemannian foliations. Lecture Notes in Mathematics, vol. 1481, pp. 145–146. Springer-Verlag (1991)Google Scholar
  11. 11.
    Obata, M.: Certain Conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333–340 (1962)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Pak, H.K.: λ-automorphisms of a Riemannian foliation. Ann. Global Anal. Geom. 13, 281–288 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pak, H.K., Park, J.H.: Transversal harmonic transformations for Riemannian foliations. Ann. Global Anal. Geom. 30, 97–105 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pak, J.S., Yorozu, S.: Transverse fields on foliated Riemannian manifolds. J. Korean Math. Soc. 25, 83–92 (1988)MATHMathSciNetGoogle Scholar
  15. 15.
    Park, J.H., Yorozu, S.: Transversal conformal fields of foliations. Nihonkai Math. J. 4, 73–85 (1993)MATHMathSciNetGoogle Scholar
  16. 16.
    Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. of Math. 69, 119–132 (1959)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Tondeur, Ph.: Foliations on Riemannian manifolds. Springer, New York (1988)MATHGoogle Scholar
  18. 18.
    Tondeur, Ph., Toth, G.: On transversal infinitesimal automorphisms for harmonic foliations. Geometriae Dedicata. 24, 229–236 (1987)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker Inc (1970)Google Scholar
  20. 20.
    Yorozu, S., Tanemura, T.: Green’s theorem on a foliated Riemannian manifold and its applications. Acta Math. Hungar. 56, 239–245 (1990)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsCheju National UniversityJejuKorea

Personalised recommendations