Advertisement

Geometriae Dedicata

, Volume 129, Issue 1, pp 83–87 | Cite as

A proof of Culter’s theorem on the existence of periodic orbits in polygonal outer billiards

  • Serge Tabachnikov
Original Paper

Abstract

We prove a recent theorem by C. Culter every polygonal outer billiard in the affine plane has a periodic trajectory.

Keywords

Outer billiard map Periodic orbits 

Mathematics Subject Classification (2000)

37E99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dogru F. and Tabachnikov S. (2003). On polygonal dual billiard in the hyperbolic plane. Reg. Chaotic Dynamics 8: 67–82 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dogru F. and Tabachnikov S. (2005). Dual billiards. Math. Intelligencer 27(4): 18–25 MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Gutkin E. and Simanyi N. (1991). Dual polygonal billiards and necklace dynamics. Comm. Math. Phys. 143: 431–450 MathSciNetGoogle Scholar
  4. 4.
    Gutkin E. and Tabachnikov S. (2006). Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards. Moscow Math. J. 6: 673–701 MATHMathSciNetGoogle Scholar
  5. 5.
    Kolodziej R. (1989). The antibilliard outside a polygon. Bull. Pol. Acad. Sci. 37: 163–168 MATHMathSciNetGoogle Scholar
  6. 6.
    Moser, J.: Stable and random motions in dynamical systems. Ann. of Math. Stud. 77, Princeton U. P. (1973)Google Scholar
  7. 7.
    Moser J. (1978). Is the solar system stable?. Is the solar system stable? Math, Intelligencer 1: 65–71 Google Scholar
  8. 8.
    Neumann B. (1959). Sharing ham and eggs. Manchester University, Iota Google Scholar
  9. 9.
    Schwartz R. (2006). Obtuse triangular billiards. I. Near the (2,3,6) triangle. Experiment. Math. 15: 161–182 MATHMathSciNetGoogle Scholar
  10. 10.
    Schwartz, R.: Obtuse triangular billiards II: 100 degrees worth of periodic trajectories. PreprintGoogle Scholar
  11. 11.
    Schwartz, R.: Billiards obtuse and irrational. PreprintGoogle Scholar
  12. 12.
    Schwartz R. (2007). Unbounded orbits for outer billiards. J. Modern Dyn. 1: 371–424 MATHGoogle Scholar
  13. 13.
    Schwartz R. (2007). Research announcement: unbounded orbits for outer billiards. E.R.A-M.S. 14: 1–6 Google Scholar
  14. 14.
    Schwartz, R.: Outer billiards on kites. Research monograph, to appearGoogle Scholar
  15. 15.
    Shaidenko A. and Vivaldi F. (1987). Global stability of a class of discontinuous dual billiards. Comm. Math. Phys. 110: 625–640 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tabachnikov, S.: Billiards. SMF “Panoramas et Syntheses”, No. 1 (1995)Google Scholar
  17. 17.
    Tabachnikov S. (1993). Outer billiards. Russ. Math. Surv. 48(6): 81–109 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Tabachnikov S. (1995). On the dual billiard problem. Adv. in Math. 115: 221–249 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tabachnikov S. (1996). Asymptotic dynamics of the dual billiard transformation. J. Stat. Phys. 83: 27–38 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tabachnikov, S.: Geometry and billiards. Amer. Math. Soc. (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations