Geometriae Dedicata

, Volume 126, Issue 1, pp 255–274 | Cite as

Boundaries on spacetimes: causality, topology, and group actions

  • Steven G. Harris
Original Paper


The future causal boundary on a spacetime serves to explicate the causal behavior of the spacetime at future infinity. The purely causal nature of this boundary has a categorically universal nature, the category being that of chronological sets. There is an associated topology with any chronological set, replicating the appropriate topology for a spacetime. Adding the future causal boundary (and using this topology) provides a quasi-compactification. The boundary for a product spacetime \(M \times \mathbb L^1\) can be detailed in terms of the Riemannian factor M.


Spacetime Boundary Static spacetime Group action 

Mathematical Subject Classification (2000)

53C50 53C70 53C80 83C20 83C30 83C75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballman, W., Gromov, M., Schroeder, V.: Manifolds of Non-positive Curvature. Birkhäuser (1985)Google Scholar
  2. 2.
    Flores J.L.: The causal boundary of spacetimes revisited. preprint gr-qc/0608063Google Scholar
  3. 3.
    Flores J.L. and Harris S.G. (2007). Topology of the causal boundary for standard static spacetimes. Class. Quantum Grav. 24: 1211–1260 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Geroch R.P., Kronheimer E.H. and Penrose R. (1972). Ideal points in space-time. Proc. Roy. Soc. Lond. A 327: 545–567 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Harris, S.G.: Causal boundary for standard static spacetimes. Nonlin. Anal. 47, 2971–2981 (2001) Special Edition: Proceedings of the Third World Congress in Nonlinear AnalysisGoogle Scholar
  6. 6.
    Harris S.G. (2004). Discrete group actions on spacetimes: causality conditions and the causal boundary. Class. Quantum Grav. 21: 1209–1236 MATHCrossRefGoogle Scholar
  7. 7.
    Harris S.G. (2000). Topology of the future chronological boundary: universality for spacelike boundaries. Class. Quantum Grav. 17: 551–603 MATHCrossRefGoogle Scholar
  8. 8.
    Harris S.G. (1998). Universality of the future chronological boundary. J. Math. Phys. 39: 5427–5445 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hawking S.W. and Ellis G.F.R. (1973). The Large Scale Structure of Space-Time. Cambridge University, Cambridge MATHGoogle Scholar
  10. 10.
    Marolf D. and Ross S.F. (2003). A new recipe for causal completions. Class. Quantum Grav. 20: 4085–4118 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Scott S.M. and Szekeres P. (1994). The abstract boundary—a new approach to singularities of manifolds. J. Geometry Phys. 13: 223–253 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Szabados, L.B.: Causal boundary for strongly causal spacetimes. Class. Quantum Grav. 5, 121–134 (1988); Causal boundary for strongly causal spacetimes: II. Class. Quantum Grav. 6, 77–91 (1989)Google Scholar
  13. 13.
    Wald, R.M.: General Relativity. University of Chicago Press (1984)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsSaint Louis UniversitySt. LouisUSA

Personalised recommendations