Advertisement

Geometriae Dedicata

, Volume 132, Issue 1, pp 105–119 | Cite as

A dynamical characterization of contact circles

  • Jesús Gonzalo Pérez
Original Paper

Abstract

A simple dynamical condition is given for line fields within a contact structure, which is satisfied exactly by those line fields which are common kernels of contact circles. Some convexity properties are established which are useful in the study of contact circles up to homotopy. A necessary condition for extending a contact form to a contact circle is given. Based on work of Lisca–Matić and Honda, concrete examples are given which show that the condition is not just homotopic but a geometric one. The paper ends with an open question.

Keywords

Contact structure Contact circle Flows Tightness 

Mathematics Subject Classification (2000)

53D35 57R17 57R57 37D30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asaoka M. (2006). Classification of regular and non-degenerate projectively Anosov flows on three-dimensional manifolds. J. Math. Kyoto Univ. 46(2): 349–356 MATHMathSciNetGoogle Scholar
  2. 2.
    Bourgeois F. (2006). Contact homology and homotopy groups of the space of contact structures. Math. Res. Lett. 13(1): 71–85 MATHMathSciNetGoogle Scholar
  3. 3.
    Eliashberg Y. (1989). Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 98(3): 623–637 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eliashberg, Y.: Legendrian and transversal knots in tight contact manifolds. In: Lisa, R, Goldberg, Anthony, V. Phillips (eds.) Topological Methods in Modern Mathematics, pp. 171–193. Publish or Perish, Stony Brook, NY (1991)Google Scholar
  5. 5.
    Eliashberg Y. (1992). Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst. Fourier (Grenoble) 42: 165–192 MATHMathSciNetGoogle Scholar
  6. 6.
    Geiges, H.: An introduction to contact topology. Cambridge Studies in Advanced Mathematics. Cambridge University Press (to appear)Google Scholar
  7. 7.
    Geiges H., Gonzalo J. (1995). Contact geometry and complex surfaces. Invent. Math. 121: 147–209 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Geiges H., Gonzalo J. (1995). Seifert invariants of left-quotients of 3-dimensional simple Lie groups. Topol. appl. 66: 117–127 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Geiges H., Gonzalo J. (1997). Contact circles on 3-manifolds. J. Differ. Geom. 46: 236–286 MATHMathSciNetGoogle Scholar
  10. 10.
    Geiges H., Gonzalo J. (2002). Moduli of contact circles. J. Reine Angew. Math. 551: 41–85 MATHMathSciNetGoogle Scholar
  11. 11.
    Geiges H., Gonzalo J. (2004). On the topology of the space of contact structures on torus bundles. Bull. London Math. Soc. 36: 640–646 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gompf R. (1998). Handlebody construction of Stein surfaces. Ann. Math. 148: 619–693 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gray J.W. (1959). Some global properties of contact structures. Ann. Math. 69: 421–450 CrossRefGoogle Scholar
  14. 14.
    Honda K. (2000). On the classification of tight contact structures. I. Geom. Topol. 4: 309–368 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Honda K. (2000). On the classification of tight contact structures. II. J. Differ. Geom. 55(1): 83–143 MATHMathSciNetGoogle Scholar
  16. 16.
    Lisca P., Matić G. (1997). Tight contact structures and Seiberg–Witten invariants. Invent. Math. 129: 509–525 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lutz, R.: Structures de contact et systèmes de Pfaff à pivot. Third Schnepfenried geometry conference, vol. 1 (Schnepfenried 1982), Astèrisque 107–108, pp. 175–187 (1983)Google Scholar
  18. 18.
    Martinet, J.: Formes de contact sur les variétés de dimension trois. Proc. Liverpool Singularities Symposium II. Springer Lecture Notes in Math., vol. 209, pp. 142–163. Springer-Verlag, Berlin (1971)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Universidad Autónoma de MadridMadridSpain

Personalised recommendations