Geometriae Dedicata

, Volume 125, Issue 1, pp 93–101 | Cite as

Locally conformal Kähler structures on compact nilmanifolds with left-invariant complex structures

  • Hiroshi Sawai
Original Paper


Let (M, g, J) be a compact Hermitian manifold and \(\Omega\) the fundamental 2-form of (g, J). A Hermitian manifold (M, g, J) is called a locally conformal Kähler manifold if there exists a closed 1-form α such that \(d\Omega=\alpha \wedge \Omega\) . The purpose of this paper is to give a completely classification of locally conformal Kähler nilmanifolds with left-invariant complex structures.


Locally conformal Kähler structure Nilmanifold 

Mathematics Subject Classifications (2000)

primary 53C55 secondary 17B30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Andrés L.C., Cordero L.A., Fernández M., Mencía J.J. (1989). Examples of four dimensional locally conformal Kähler solvmanifolds. Geom. Dedicata 29: 227–232 MATHCrossRefGoogle Scholar
  2. 2.
    Arapura D., Nori M. (1999). Solvable fundamental groups of algebraic varieties and Kähler manifolds. Compositio Math 116: 173–188 MATHCrossRefGoogle Scholar
  3. 3.
    Belgun F.A. (2000). On the metric structure of non-Kähler complex surfaces. Math. Ann. 317: 1–40 MATHCrossRefGoogle Scholar
  4. 4.
    Benson C., Gordon C. (1988). Kähler and Symplectic structures on nilmanifolds. Topology 27: 513–518 MATHCrossRefGoogle Scholar
  5. 5.
    Cordero L.A., Fernández M., de Léon M. (1986). Compact locally conformal Kähler nilmanifolds. Geom. Dedicate 21: 187–192 MATHGoogle Scholar
  6. 6.
    Dixmier J. (1955). Cohomologie des algebres de Lie nilpotentes. Acta Sci. Math. Szeged 16: 246–250 MATHGoogle Scholar
  7. 7.
    Dragomir, S., Ornea, L.: Locally conformal Kähler geometry. Birkhäuser (1998)Google Scholar
  8. 8.
    Hasegawa K. (1989). Minimal models of nilmanifolds. Proc. Amer. Math. Soc. 106: 65–71 MATHCrossRefGoogle Scholar
  9. 9.
    Hasegawa, K.: A note on compact solvmanifolds with Kähler structures. arXiv:math.CV/046227 v1 11, Jun 2004Google Scholar
  10. 10.
    Millonschikov, D.V.: Cohomology with local coefficients of solvmanifolds and Morse-Novikov theory. arXiv:math.DG/0203067 v1 7, Mar 2002Google Scholar
  11. 11.
    Nomizu K. (1954). On the cohomology of homogeneous of nilpotent Lie groups. Ann. Math. 59: 531–538 CrossRefGoogle Scholar
  12. 12.
    Raghunathan, M.S.: Discrete Subgroup of Lie groups. Springer (1972)Google Scholar
  13. 13.
    Salamon S. (2001). Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157: 311–333 MATHCrossRefGoogle Scholar
  14. 14.
    Sawai H.: On the property of compact solvmanifolds. preprintGoogle Scholar
  15. 15.
    Tricerri F. (1982). Some examples of locally conformal Kähler manifolds. Rend. Sem. Math. Univ. Politec. Torino 40(1): 81–92 Google Scholar
  16. 16.
    Ugarte, L.: Hermitian structures on six dimensional nilmanifolds. arXiv:math.DG/0411254 v1 11, Nov 2004Google Scholar
  17. 17.
    Vaisman I. (1979). Locally conformal Kähler manifolds with parallel Lee form. Rend. Math 2(12): 263–284 Google Scholar
  18. 18.
    Wang H.C. (1954). Complex parallizable manifolds. Proc. Amer. Math. Soc. 5: 771–776 MATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations