Skip to main content
Log in

Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected components of the moduli space of representations with maximal Toledo invariant

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Atiyah M.F. and Bott R. (1982). The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308: 523–615

    MathSciNet  Google Scholar 

  2. Biswas I. and Ramanan S. (1994). An infinitesimal study of the moduli of Hitchin pairs. J. London Math. Soc. 49(2): 219–231

    MATH  MathSciNet  Google Scholar 

  3. Bradlow S.B., García-Prada O. and Gothen P.B. (2001). Representations of the fundamental group of a surface in PU(p,q) and holomorphic triples. C. R., Acad. Sci. Paris Sér. I Math. 333: 347–352

    MATH  Google Scholar 

  4. Bradlow S.B., García-Prada O. and Gothen P.B. (2003). Surface group representations and U(p,q)-Higgs bundles. J. Differ. Geom. 64: 111–170

    MATH  Google Scholar 

  5. Bradlow S.B., García-Prada O. and Mundeti Riera I. (2003). Relative Hitchin-Kobayashi correspondences for principal pairs. Quart. J. Math. 54: 171–208

    Article  MATH  Google Scholar 

  6. Burger, M., Iozzi, A., Labourie, F., Wienhard, A.: Maximal representations of surface groups: Symplectic Anosov structures. (2005), Preprint, arXiv:math.DG/0506079

  7. Burger M., Iozzi A. and Wienhard A. (2003). Surface group representations with maximal Toledo invariant. C. R. Math. Acad. Sci. Paris 336(5): 387–390

    MATH  MathSciNet  Google Scholar 

  8. Burger, M., Iozzi, A., Wienhard, A.: Surface group representations with maximal Toledo invariant (2006) Preprint, arXiv:math.DG/0605656v2

  9. Choi S. and Goldman W.M. (1993). Convex real projective structures on closed surfaces are closed. Proc. Am. Math. Soc. 118: 657–661

    Article  MATH  MathSciNet  Google Scholar 

  10. Choi S. and Goldman W.M. (1997). The classification of real projective structures on compact surfaces. Bull. Am. Math. Soc. (N.S.) 34: 161–171

    Article  MATH  MathSciNet  Google Scholar 

  11. Corlette K. (1988). Flat G-bundles with canonical metrics. J. Differ. Geom. 28: 361–382

    MATH  MathSciNet  Google Scholar 

  12. Domic A. and Toledo D. (1987). The Gromov norm of the Kaehler class of symmetric domains. Math. Ann. 276: 425–432

    Article  MATH  MathSciNet  Google Scholar 

  13. Donaldson S.K. (1987). Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc 55(3): 127–131

    Article  MATH  MathSciNet  Google Scholar 

  14. Faraut J. and Korányi A. (1994). Analysis on Symmetric Cones, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York

    Google Scholar 

  15. Frankel T. (1959). Fixed points and torsion on Kähler manifolds. Ann. Math. 2(70): 1–8

    Article  MathSciNet  Google Scholar 

  16. García-Prada, O., Gothen, P.B., Mundet i Riera, I.: Representations of surface groups in Sp \((2n,\mathbb{R})\).(2006) (preliminary version).

  17. García-Prada, O., Mundeti Riera, I.: Representations of the fundamental group of a closed oriented surface in \(Sp(4,\mathbb{R})\). Topology 43, 831–855 (2004)

  18. Goldman, W.M.: Discontinuous groups and the Euler class. Ph.D. thesis, University of California, Berkeley (1980)

  19. Goldman W.M. (1988). Topological components of spaces of representations. Invent. Math. 93: 557–607

    Article  MATH  MathSciNet  Google Scholar 

  20. Gothen P.B. (2001). Components of spaces of representations and stable triples. Topology 40: 823–850

    Article  MATH  MathSciNet  Google Scholar 

  21. Helgason S. (1998). Differential Geometry, Lie groups and Symmetric Spaces, Mathematics, Vol. 80. Academic Press, San Diego

    Google Scholar 

  22. Hernández L. (1991). Maximal representations of surface groups in bounded symmetric domains. Trans. Am. Math. Soc. 324: 405–420

    Article  MATH  Google Scholar 

  23. Hitchin N.J. (1987). The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55(3): 59–126

    Article  MATH  MathSciNet  Google Scholar 

  24. Hitchin N.J. (1992). Lie groups and Teichmüller space. Topology 31: 449–473

    Article  MATH  MathSciNet  Google Scholar 

  25. Korányi A. and Wolf J.A. (1965). Realization of hermitian symmetric spaces as generalized half-planes. Ann. of Math. 81(2): 265–288

    Article  MathSciNet  Google Scholar 

  26. Labourie, F.: Anosov flows, surface groups and curves in projective space. (2004) Preprint, arXiv:math.DG/0401230.

  27. Li J. (1993). The space of surface group representations. Manuscripta Math. 78: 223–243

    Article  MATH  MathSciNet  Google Scholar 

  28. Markman E. and Xia E.Z. (2002). The moduli of flat PU(p,p)-structures with large Toledo invariants. Math. Z. 240: 95–109

    Article  MATH  MathSciNet  Google Scholar 

  29. Narasimhan M.S. and Seshadri C.S. (1965). Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. 82: 540–567

    Article  MathSciNet  Google Scholar 

  30. Ramanathan A. (1975). Stable principal bundles on a compact Riemann surface. Math. Ann. 213: 129–152

    Article  MATH  MathSciNet  Google Scholar 

  31. Satake I. (1980). Algebraic Structures of Symmetric Domains, Kanô Memorial Lectures, Vol. 4. Iwanami Shoten, Tokyo

    Google Scholar 

  32. Simpson C.T. (1988). Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc. 1: 867–918

    Article  MATH  MathSciNet  Google Scholar 

  33. Simpson C.T. (1992). Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75: 5–95

    MATH  MathSciNet  Google Scholar 

  34. Simpson C.T. (1994). Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math., Inst. Hautes Étud. Sci. 79: 47–129

    MATH  MathSciNet  Google Scholar 

  35. Simpson C.T. (1995). Moduli of representations of the fundamental group of a smooth projective variety II. Publ. Math., Inst. Hautes Étud. Sci. 80: 5–79

    MATH  Google Scholar 

  36. Toledo D. (1989). Representations of surface groups in complex hyperbolic space. J. Differential Geom. 29: 125–133

    MATH  MathSciNet  Google Scholar 

  37. Turaev V.G. (1984). A cocycle of the symplectic first Chern class and the Maslov index. Funct. Anal. Appl. 18: 35–39

    Article  MATH  MathSciNet  Google Scholar 

  38. Uhlenbeck K.K. (1982). Connections with L p bounds on curvature. Comm. Math. Phys. 83: 31–42

    Article  MATH  MathSciNet  Google Scholar 

  39. Welters G.E. (1983). Polarized abelian varieties and the heat equations. Compositio Math. 49: 173–194

    MATH  MathSciNet  Google Scholar 

  40. Wienhard, A: Bounded cohomology and geometry. Ph.D. thesis, Universität Bonn (2005) arXiv:math.DG/0501258

  41. Xia E.Z. (2000). The moduli of flat PU(2,1) structures over Riemann surfaces. Pacific Journal of Mathematics 195: 231–256

    Article  MATH  MathSciNet  Google Scholar 

  42. Xia E.Z. (2003). The moduli of flat U(p,1) structures on Riemann surfaces. Geom. Dedicata 97: 33–43

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Gothen.

Additional information

Members of VBAC (Vector Bundles on Algebraic Curves). Second and Third authors partially supported by Ministerio de Educación y Ciencia and Conselho de Reitores das Universidades Portuguesas through Acción Integrada Hispano-Lusa HP2002-0017 (Spain)/E–30/03 (Portugal). First and Second authors partially supported by Ministerio de Educación y Ciencia (Spain) through Project MTM2004-07090-C03-01. Third author partially supported by the Centro de Matemática da Universidade do Porto and the project POCTI/MAT/58549/2004, financed by FCT (Portugal) through the programmes POCTI and POSI of the QCA III (2000–2006) with European Community (FEDER) and national funds. The second author visited the IHES with the partial support of the European Commission through its 6th Framework Programme “Structuring the European Research Area” and the Contract No. RITA-CT-2004-505493 for the provision of Transnational Access implemented as Specific Support Action

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradlow, S.B., García-Prada, O. & Gothen, P.B. Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces. Geom Dedicata 122, 185–213 (2006). https://doi.org/10.1007/s10711-007-9127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9127-y

Keywords

Mathematics Subject Classification

Navigation