Geometriae Dedicata

, Volume 121, Issue 1, pp 89–111 | Cite as

Stein domains and branched shadows of 4-manifolds

  • Francesco Costantino
Original Paper


We provide sufficient conditions assuring that a suitably decorated 2-polyhedron can be thickened to a compact four-dimensional Stein domain. We also study a class of flat polyhedra in 4-manifolds and find conditions assuring that they admit Stein, compact neighborhoods. We base our calculations on Turaev’s shadows suitably “smoothed”; the conditions we find are purely algebraic and combinatorial. Applying our results, we provide examples of hyperbolic 3-manifolds admitting “many” positive and negative Stein fillable contact structures, and prove a four-dimensional analog of Oertel’s result on incompressibility of surfaces carried by branched polyhedra.


Stein domain Polyhedra Manifold Shadow 

Mathematics Subject Classifications (2000)

Primary 57N13 Secondary 32B28 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agol I. (2000) Bounds on exceptional Dehn filling. Geom. Topol. 4, 431–439MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bishop E. (1975) Differentiable manifolds in complex euclidean space. Duke. Math. J. 32, 1–21CrossRefMathSciNetGoogle Scholar
  3. 3.
    Benedetti R., Petronio C. (2000) Branched spines and contact structures on 3-manifolds. Ann. Mat. Pura Appl. 178(4): 81–102MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Benedetti R., Petronio C. (1997) Branched standard spines of 3-manifolds. Lecture Notes in Mathematics, Springer-Verlag, BerlinMATHGoogle Scholar
  5. 5.
    Costantino, F.: Shadows and branched shadows of 3 and 4-manifolds. Tesi di perfezionamento, Scuola Normale Superiore, Pisa (2004)Google Scholar
  6. 6.
    Costantino, F.: Branched shadows and complex structures of 4-manifolds. /math.GT/0502292 (2005)Google Scholar
  7. 7.
    Costantino F. (2005) A short introduction to shadows of 4-manifolds. Fund. Math. 188, 271–291MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chern S.S., Spanier E. (1951) A theorem on orientable surfaces in four-dimensional space. Comm. Math. Helv. 25, 205–209MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Costantino, F., Thurston, D.P.: 3-manifolds efficiently bound 4-manifolds. 0506577 (2005)Google Scholar
  10. 10.
    Eliashberg Y. (1990) Topological characterization of Stein manifolds of dimension ≥  3. Internat. J. Math. 1(1): 119–131CrossRefMathSciNetGoogle Scholar
  11. 11.
    Forstneriç F. (2003) Stein domains in complex surfaces. J. Geom. Anal. 13(1): 77–94MathSciNetGoogle Scholar
  12. 12.
    Gompf R. (1998) Handlebody construction of Stein surfaces. Ann. of Math. 148, 619–693MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gompf, R., Stipsicz, A.: 4-manifolds and Kirby calculus. Graduate Studies in Mathematics, vol. 20, Amer. Math. Soc., Providence, RI (1999)Google Scholar
  14. 14.
    Harlamov, V.M., Eliashberg, Y.: On the number of complex points of a real surface in a complex surface. pp. 143–148. Proc. Leningrad Int. Topology Conf. (1982)Google Scholar
  15. 15.
    Kronheimer P.B., Mrowka T.S. (1997) Monopoles and contact structures. Invent. Math. 130(2): 209–255MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lackenby M. (2000) Word hyperbolic Dehn surgery. Invent. Math. 140, 243–282MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lai H.F. (1972) Characteristic classes of real manifolds immersed in complex manifolds. Trans. Amer. Math. Soc. 172, 1–33CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lisca P. (1998) Symplectic fillings and positive scalar curvature. Geom. Topol. 2, 103–116MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nirenberg R., Wells R.O. (1969) Approximation theorems on differentiable submanifolds of a complex manifold. Trans. Amer. Math. Soc. 142, 15–35MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Oertel U. (1984) Incompressible branched surfaces. Invent. Math. 76, 385–410MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Polyak, M.: Shadows of Legendrian links and J +-theory of curves. Singularities (Oberwolfach, 1996), pp. 435–458. Progr. Math. 162, Birkhäuser, Basel (1998)Google Scholar
  22. 22.
    Turaev V.G. (1994) Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter and Co., BerlinGoogle Scholar
  23. 23.
    Turaev V.G. (1991) Quantum invariants of 3-manifolds and a glimpse of shadow topology. C. R. Acad. Sci. Paris Sr. I Math. 313(6): 395–398MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Institut de Recherche Mathématique AvancéeStrasbourg CedexFrance

Personalised recommendations