Geometriae Dedicata

, Volume 108, Issue 1, pp 1–14 | Cite as

Some Remarks about the FM-partners of K3 Surfaces with Picard Numbers 1 and 2

  • Paolo Stellari


In this paper we describe some results about K3 surfaces with Picard number 1 and 2. In particular, we give a new simple proof of a theorem due to Oguiso which shows that, given an integer N, there is a K3 surface with Picard number 2 and at least N non-isomorphic FM-partners. We describe also the Mukai vectors of the moduli spaces associated to the FM-partners of K3 surfaces with Picard number 1.

K3 surfaces Fourier–Mukai partners 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W., Peters, C. and Van de Ven, A.: Compact Complex Surfaces, Springer-Verlag, Berlin, 1984Google Scholar
  2. 2.
    Cassels, J. W. S.: Rational Quadratic Forms, Academic Press, New York, 1978.Google Scholar
  3. 3.
    Hosono, S., Lian, B. H., Oguiso, K. and Yau, S. T.: Autoequivalences of derived categoryof a K3 surface and monodromy transformations, to appear in J. Algebra. Geom. Google Scholar
  4. 4.
    Hosono, S., Lian, B. H., Oguiso, K. and Yau, S. T.: Fourier—Mukai number of a K3 surface, math.AG/0202014.Google Scholar
  5. 5.
    Hosono, S., Lian, B. H., Oguiso, K. and Yau, S. T.: Fourier—Mukai partners of a K3 surface of Picard number one, In: Vector Bundles and Representation Theory (Columbia, 2002), Contemp. Math. 322, Amer. Math. Soc., Providence, 2003, pp. 43–55.MathSciNetGoogle Scholar
  6. 6.
    Hosono, S., Lian, B. H., Oguiso, K. and Yau, S.-T.: Kummer structures on a K3 surface — An old question of T. Shioda, Duke Math. J. 120 (2003), 635–647.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Iwaniec, H.: Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978), 171–188.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Morrison, D. R.: On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105–121.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Mukai, S.: Duality of polarized K3 surfaces, In: New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 311–326.Google Scholar
  10. 10.
    Mukai, S.: On the moduli space of bundles on K3 surfaces, I, In: Vector Bundles on Algebraic Varieties, Bombay, 1984.Google Scholar
  11. 11.
    Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), 101–116.MATHMathSciNetGoogle Scholar
  12. 12.
    Nikulin, V. V.: Integral symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 (1980), 103–167.CrossRefMATHGoogle Scholar
  13. 13.
    Oguiso, K.: K3 surfaces via almost-prime, Math. Res. Lett. 9 (2002), 47–63 (also in math.AG/0110282).MATHMathSciNetGoogle Scholar
  14. 14.
    Orlov, D.: Equivalences of derived categories and K3 surfaces, J. Math. Sci. 84 (1997), 1361–1381.MATHMathSciNetGoogle Scholar
  15. 15.
    Scattone, F.: On the compacti cation of moduli spaces for algebraic K3 surfaces, Mem. Amer. Math. Soc. 70 (1987) 374.MathSciNetGoogle Scholar
  16. 16.
    Shioda, T.: The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo, Sect IA 25 (1978), 47–59.MATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Paolo Stellari
    • 1
  1. 1.Department of MathematicsUniversità degli Studi di MilanoMilanItaly

Personalised recommendations