Skip to main content
Log in

Group Pairs with Property (T), from Arithmetic Lattices

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let Γ be an arithmetic lattice in an absolutely simple Lie group G with trivial centre. We prove that there exists an integer N ≥ 2, a subgroup Λ of finite index in Γ, and an action of Λ on \({\mathbb Z}^{N}\) such that the pair ( \(\Lambda \ltimes {\mathbb Z}^{N}, {\mathbb Z}^{N}\)) has property (T). If G has property (T), then so does \(\Lambda \ltimes {\mathbb Z}^{N}\). If G is the adjoint group of Sp(n, 1), then \(\Lambda \ltimes {\mathbb Z}^{N}\) is a property (T) group satisfying the Baum–Connes conjecture. If Γ is an arithmetic lattice in SO(n, 1), then the associated von Neumann algebra \((L(\Lambda \ltimes {\mathbb Z}^{N}))\) is a II1-factor in Popa’s class \({\cal HT}_{s}\). Elaborating on this result of Popa, we construct a countable family of pairwise nonstably isomorphic group II1-factors in the class \({\cal HT}_{s}\), all with trivial fundamental groups and with all L2-Betti numbers being zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Alperin (1987) ArticleTitleAn elementary account of Selberg’s lemma Enseign. Mat. 33 269–273

    Google Scholar 

  2. Baum P., Connes A., Higson N. (1994). Classifying spaces for proper actions and K-theory of group C*-algebras, In: C*-Algebras 1943–1993: A Fifty-Year Celebration, Contemp Math. 167 , Amer. Math. Soc., Providence, 1994, pp. 241–291

  3. A. Borel (1960) ArticleTitleDensity properties for certain subgroups of semi-simple groups without compact components Ann. Math. 72 62–74

    Google Scholar 

  4. Borel A. Introduction aux groupes arithmétiques , Hermann, Actu. sci. et industr, 1341, 1969

  5. A. Borel (1985) ArticleTitleThe L2-cohomology of negatively curved Riemannian symmetric spaces Acad. Sci. Fenn. Ser. A Math. 10 95–105

    Google Scholar 

  6. A. Borel (1991) Linear Algebraic Groups EditionNumber2 Springer-Verlag Berlin

    Google Scholar 

  7. Cherix P.-A., Cowling M., Jolissaint P., Julg P., Valette A. Groups with the Haagerup Property (Gromov’s a-T-menability), Progr. in Math., Birkhäuser, Basel, 2001

  8. J. Chabert S. Echterhoff (2001) ArticleTitlePermanence properties of the Baum–Connes conjecture Documenta Math. 6 127–183

    Google Scholar 

  9. J. Cheeger M. Gromov (1986) ArticleTitleL2-cohomology and group cohomology Topology 25 189–215 Occurrence Handle10.1016/0040-9383(86)90039-X

    Article  Google Scholar 

  10. A. Connes V.F.R. Jones (1985) ArticleTitleProperty T for von Neumann algebras Bull. London Math. Soc. 17 57–62

    Google Scholar 

  11. A. Connes (1980) ArticleTitleA factor of type II with countable fundamental group J. Oper. Theory. 4 151–153

    Google Scholar 

  12. K. Corlette (1992) ArticleTitleArchimedean superrigidity and hyperbolic rigidity Ann. Math. 135 165–182

    Google Scholar 

  13. M. Cowling R.J. Zimmer (1989) ArticleTitleActions of lattices in Sp(1, n) Ergodic Theory Dynam. Systems. 9 221–237

    Google Scholar 

  14. de la Harpe P., Valette A.: La propriété (T) de Kazhdan pour les groupes localement compacts , Astérisque 175, Soc. Math France, 1989

  15. P. Deligne G.D. Mostow (1986) ArticleTitleMonodromy of hypergeometric functions and non-lattice integral monodromy Publ. Math IHES. 63 5–89

    Google Scholar 

  16. A. Furman (1999) ArticleTitleOrbit equivalence rigidity Ann. Math. 150 1083–1108

    Google Scholar 

  17. D. Gaboriau (2002) ArticleTitleInvariants \(\ell^{2}\) de relations d’équivalence et de groupes Publ. Math. Inst. Hautes Etudes Sci. 95 93–150 Occurrence Handle10.1007/s102400200002

    Article  Google Scholar 

  18. M. Gromov I. Piatetski-Shapiro (1988) ArticleTitleNonarithmetic groups in Lobachevsky spaces Publ. Math. Inst. Hautes Etdes Sci. 66 93–103

    Google Scholar 

  19. M. Gromov R. Schoen (1992) ArticleTitleHarmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one Inst. Hautes Etudes Sci. Publ. Math. 76 165–246

    Google Scholar 

  20. Julg P. (1998). Travaux de Higson et Kasparov sur la conjecture de Baum–Connes, In: Séminaire Bourbaki , Exposé 841

  21. P. Julg (2002) ArticleTitleLa conjecture de Baum–Connesà coefficients pour le groupe Sp(n, 1) C.R. Acad. Sci Paris. 334 533–538

    Google Scholar 

  22. Kasparov, G. G.: K-theory, group C*-algebras, and higher signatures (Conspectus, first distributed 1981), In: Novikov Conjectures, Index Theorems and Rigidity, London Math. Soc Lecture Notes Ser. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 101–146

  23. D. Kazhdan (1967) ArticleTitleConnection of the dual space of a group with the structure of its closed subgroups Funct. Anal. Appl. 1 63–65 Occurrence Handle10.1007/BF01075866

    Article  Google Scholar 

  24. V. Lafforgue (1998) ArticleTitleUne démonstration de la conjecture de Baum–Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T) C.R Acad. Sci. Paris. 327 439–444

    Google Scholar 

  25. G.A. Margulis (1973) ArticleTitleExplicit construction of concentrators Problems Inform. Transmission. 9 325–332

    Google Scholar 

  26. Margulis G.A. (1991). Discrete Subgroups of Semisimple Lie Groups. Ergeb. Math. Grenzgeb. (3), 17. Springer, Berlin

  27. Monod N., Shalom Y. Orbit equivalence rigidity and bounded cohomology, to appear in Ann. Math. Preprint, May 2002

  28. H. Oyono-Oyono (2001) ArticleTitleBaum–Connes conjecture and extensions J Reine Angew. Math. 532 133–149

    Google Scholar 

  29. Popa S. On a class of type II1 factors with Betti numbers invariants, Preprint, Aug. 2002

  30. Popa S. On the fundamental group of type II1 factors, Preprint, 2003

  31. Valette A. Old and new about Kazhdan’s property (T), In: V Baldoni and M. Picardello (eds), Representations of Lie Groups and Quantum Groups , Pitman Res. Notes in Math. Ser., Longman, Harlow, 1994, pp. 271–333

  32. Witte-Morris D. Introduction to arithmetic groups, Pre-book, February 2003

  33. Zimmer R.J. Ergodic Theory and Semisimple Groups , Birkhäuser, Basel, 1984

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Valette.

Additional information

Mathematics Subject Classiffications (2000). 22E40, 22E47, 46L80, 37A20

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valette, A. Group Pairs with Property (T), from Arithmetic Lattices. Geom Dedicata 112, 183–196 (2005). https://doi.org/10.1007/s10711-004-7609-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-004-7609-8

Keywords

Navigation