Geometriae Dedicata

, Volume 112, Issue 1, pp 183–196 | Cite as

Group Pairs with Property (T), from Arithmetic Lattices

  • Alain Valette


Let Γ be an arithmetic lattice in an absolutely simple Lie group G with trivial centre. We prove that there exists an integer N ≥ 2, a subgroup Λ of finite index in Γ, and an action of Λ on \({\mathbb Z}^{N}\) such that the pair ( \(\Lambda \ltimes {\mathbb Z}^{N}, {\mathbb Z}^{N}\)) has property (T). If G has property (T), then so does \(\Lambda \ltimes {\mathbb Z}^{N}\). If G is the adjoint group of Sp(n, 1), then \(\Lambda \ltimes {\mathbb Z}^{N}\) is a property (T) group satisfying the Baum–Connes conjecture. If Γ is an arithmetic lattice in SO(n, 1), then the associated von Neumann algebra \((L(\Lambda \ltimes {\mathbb Z}^{N}))\) is a II1-factor in Popa’s class \({\cal HT}_{s}\). Elaborating on this result of Popa, we construct a countable family of pairwise nonstably isomorphic group II1-factors in the class \({\cal HT}_{s}\), all with trivial fundamental groups and with all L2-Betti numbers being zero.


group pairs with property (T) arithmetic lattices Baum–Connes conjecture fundamental group of a factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alperin, R.C. 1987An elementary account of Selberg’s lemmaEnseign. Mat.33269273Google Scholar
  2. 2.
    Baum P., Connes A., Higson N. (1994). Classifying spaces for proper actions and K-theory of group C*-algebras, In: C*-Algebras 1943–1993: A Fifty-Year Celebration, Contemp Math. 167 , Amer. Math. Soc., Providence, 1994, pp. 241–291Google Scholar
  3. 3.
    Borel, A. 1960Density properties for certain subgroups of semi-simple groups without compact componentsAnn. Math.726274Google Scholar
  4. 4.
    Borel A. Introduction aux groupes arithmétiques , Hermann, Actu. sci. et industr, 1341, 1969Google Scholar
  5. 5.
    Borel, A. 1985The L2-cohomology of negatively curved Riemannian symmetric spacesAcad. Sci. Fenn. Ser. A Math.1095105Google Scholar
  6. 6.
    Borel, A. 1991Linear Algebraic Groups2Springer-VerlagBerlinGoogle Scholar
  7. 7.
    Cherix P.-A., Cowling M., Jolissaint P., Julg P., Valette A. Groups with the Haagerup Property (Gromov’s a-T-menability), Progr. in Math., Birkhäuser, Basel, 2001Google Scholar
  8. 8.
    Chabert, J., Echterhoff, S. 2001Permanence properties of the Baum–Connes conjectureDocumenta Math.6127183Google Scholar
  9. 9.
    Cheeger, J., Gromov, M. 1986L2-cohomology and group cohomologyTopology25189215CrossRefGoogle Scholar
  10. 10.
    Connes, A., Jones, V.F.R. 1985Property T for von Neumann algebrasBull. London Math. Soc.175762Google Scholar
  11. 11.
    Connes, A. 1980A factor of type II with countable fundamental groupJ. Oper. Theory.4151153Google Scholar
  12. 12.
    Corlette, K. 1992Archimedean superrigidity and hyperbolic rigidityAnn. Math.135165182Google Scholar
  13. 13.
    Cowling, M., Zimmer, R.J. 1989Actions of lattices in Sp(1, n)Ergodic Theory Dynam. Systems.9221237Google Scholar
  14. 14.
    de la Harpe P., Valette A.: La propriété (T) de Kazhdan pour les groupes localement compacts , Astérisque 175, Soc. Math France, 1989Google Scholar
  15. 15.
    Deligne, P., Mostow, G.D. 1986Monodromy of hypergeometric functions and non-lattice integral monodromyPubl. Math IHES.63589Google Scholar
  16. 16.
    Furman, A. 1999Orbit equivalence rigidityAnn. Math.15010831108Google Scholar
  17. 17.
    Gaboriau, D. 2002Invariants \(\ell^{2}\) de relations d’équivalence et de groupesPubl. Math. Inst. Hautes Etudes Sci.9593150CrossRefGoogle Scholar
  18. 18.
    Gromov, M., Piatetski-Shapiro, I. 1988Nonarithmetic groups in Lobachevsky spacesPubl. Math. Inst. Hautes Etdes Sci.6693103Google Scholar
  19. 19.
    Gromov, M., Schoen, R. 1992Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank oneInst. Hautes Etudes Sci. Publ. Math.76165246Google Scholar
  20. 20.
    Julg P. (1998). Travaux de Higson et Kasparov sur la conjecture de Baum–Connes, In: Séminaire Bourbaki , Exposé 841Google Scholar
  21. 21.
    Julg, P. 2002La conjecture de Baum–Connesà coefficients pour le groupe Sp(n, 1)C.R. Acad. Sci Paris.334533538Google Scholar
  22. 22.
    Kasparov, G. G.: K-theory, group C*-algebras, and higher signatures (Conspectus, first distributed 1981), In: Novikov Conjectures, Index Theorems and Rigidity, London Math. Soc Lecture Notes Ser. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 101–146Google Scholar
  23. 23.
    Kazhdan, D. 1967Connection of the dual space of a group with the structure of its closed subgroupsFunct. Anal. Appl.16365CrossRefGoogle Scholar
  24. 24.
    Lafforgue, V. 1998Une démonstration de la conjecture de Baum–Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T)C.R Acad. Sci. Paris.327439444Google Scholar
  25. 25.
    Margulis, G.A. 1973Explicit construction of concentratorsProblems Inform. Transmission.9325332Google Scholar
  26. 26.
    Margulis G.A. (1991). Discrete Subgroups of Semisimple Lie Groups. Ergeb. Math. Grenzgeb. (3), 17. Springer, BerlinGoogle Scholar
  27. 27.
    Monod N., Shalom Y. Orbit equivalence rigidity and bounded cohomology, to appear in Ann. Math. Preprint, May 2002Google Scholar
  28. 28.
    Oyono-Oyono, H. 2001Baum–Connes conjecture and extensionsJ Reine Angew. Math.532133149Google Scholar
  29. 29.
    Popa S. On a class of type II1 factors with Betti numbers invariants, Preprint, Aug. 2002Google Scholar
  30. 30.
    Popa S. On the fundamental group of type II1 factors, Preprint, 2003Google Scholar
  31. 31.
    Valette A. Old and new about Kazhdan’s property (T), In: V Baldoni and M. Picardello (eds), Representations of Lie Groups and Quantum Groups , Pitman Res. Notes in Math. Ser., Longman, Harlow, 1994, pp. 271–333Google Scholar
  32. 32.
    Witte-Morris D. Introduction to arithmetic groups, Pre-book, February 2003Google Scholar
  33. 33.
    Zimmer R.J. Ergodic Theory and Semisimple Groups , Birkhäuser, Basel, 1984Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institut de MathématiquesNeuchâtelSwitzerland

Personalised recommendations