Genetic Programming and Evolvable Machines

, Volume 8, Issue 4, pp 319–354 | Cite as

Interactive evolution for cochlear implants fitting

  • Pierrick Legrand
  • Claire Bourgeois-Republique
  • Vincent Péan
  • Esther Harboun-Cohen
  • Jacques Levy-Vehel
  • Bruno Frachet
  • Evelyne Lutton
  • Pierre Collet
Original Paper


Cochlear implants (CI) are devices that become more and more sophisticated and adapted to the need of patients, but at the same time they become more and more difficult to parameterize. After a deaf patient has been surgically implanted, a specialised medical practitioner has to spend hours during months to precisely fit the implant to the patient. This process is a complex one implying two intertwined tasks: the practitioner has to tune the parameters of the device (optimisation) while the patient’s brain needs to adapt to the new data he receives (learning). This paper presents a study that intends to make the implant more adaptable to environment (auditive ecology) and to simplify the process of fitting. Real experiments on volunteer implanted patients are presented, that show the efficiency of interactive evolution for this purpose.


Interactive evolution Cochlear implants fitting Signal processing Classification HEVEA project 



We would like to thank Neurelec (an MXM company, who provided us with equipment that made this research possible. This work has partially been funded by the French ANR-RNTS HEVEA project 04T550.


  1. 1.
    Archbold, S., Lutman, M., Marshall, D.: Categories of auditory performance. Ann. Otol. Rhinol. Laryngol. Suppl. 116, 312–314 (1995)Google Scholar
  2. 2.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New-York(1996)MATHGoogle Scholar
  3. 3.
    Bäck, T.: Tutorial on Evolution Strategies. Genetic and Evolutionary Computation Conference Gecco’05 (2005)Google Scholar
  4. 4.
    Blamey, P.J., Pyman, B.C., Gordon, M., Clark, G.M., Brown, A.M., Dowell, R.C., Hollow, R.D.: Factors predicting postoperative sentence scores in postlinguistically deaf adult cochlear implant patients. Ann. Otol. Rhinol. Laryngol. 101(4), 342–348 (1992)Google Scholar
  5. 5.
    Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 4, 361–394 (1996)Google Scholar
  6. 6.
    Bourgeois-République, C., Frachet, B., Collet, P.: Using an IEA to help fitting a cochlear implant. In: GECCO ’05: Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation, pp. 133–139, ACM Press, New York, NY, USA (2005)Google Scholar
  7. 7.
    Bourgeois-République, C.: Plateforme de réglage automatique et adaptatif d’implant cochléaire par algorithme évolutionnaire interactif. Phd thesis, University of Bourgogne, Fr (2004)Google Scholar
  8. 8.
    Bourgeois-République, C., Valigiani, G., Collet, P.: An interactive evolutionary algorithm for cochlear implant fitting: First results. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 231–235 (2005)Google Scholar
  9. 9.
    Chouard, C.H., Fugain, C., Meyer, B., Lacombe, H.: Long term results of the multichannel cochlear implant. Ann. N. Y. Acad. Sci. 405, 387–411 (1983)CrossRefGoogle Scholar
  10. 10.
    Chouard, C.H., Ouayoun, M., Meyer, B.: Speech coding strategies of the digisonic fully digitized cochlear implant. Acta Otolaryngol 115, 264–268 (1995)Google Scholar
  11. 11.
    Cohen, L.: Time frequency distribution a review. In: Proceedings IEEE vol. 77, pp. 941–981 (1989)Google Scholar
  12. 12.
    Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Schoenauer, M., Deb, K., Rudolph, G., Lutton, E., Yao, X., Merelo, J.J., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature—PPSN VI 6th International Conference, vol. 1917 of LNCS, pp. 891–901, Springer-Verlag, Berlin (2000)Google Scholar
  13. 13.
    Daubechies, I.: Ten Lectures on Wavelets, vol. 61. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, (1992)Google Scholar
  14. 14.
    De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA (2005)Google Scholar
  15. 15.
    Dorman, M.F., Dankowski, K., McCandless, G., Smith, L.M.: Consonant recognition as a function of the number of channels of stimulation by patients who use the symbion cochlear implant. Ear Hear 10(5), 288–291 (1989)CrossRefGoogle Scholar
  16. 16.
    Durant, E.A.: Hearing aid fitting with genetic algorithms. Phd thesis, University of Michigan, USA (2002)Google Scholar
  17. 17.
    Fishman, G.S.: Monte-Carlo: Concepts, Algorithms and Applications. Springer-Verlag, New York (1996)MATHGoogle Scholar
  18. 18.
    Franck, K.H., Xu, L., Pfingst, B.E.: Effect of stimulus level on speech perception with cochlear prostheses. J. Assoc. Res. Otolaryngol. 4(1), 49–59 (2003)CrossRefGoogle Scholar
  19. 19.
    Friesen, L.M., Shannon, R.V., Baskent, D., Wang, X.: Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110(2), 1150–1163 (2001)CrossRefGoogle Scholar
  20. 20.
    Gallego, S., Frachet, B., Micheyl, C., Truy, E., Collet, L.: Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics. Electroencephalogr. Neurophysiol. Clin. Neurophysiol. 108, 521–525(1998)CrossRefGoogle Scholar
  21. 21.
    Hesse, G.: Programmation des seuils liminaires de l’implant cochléaire MED-EL Tempo+. Thèse de doctorat de médecine, Université de Rennes, Fr (2002)Google Scholar
  22. 22.
    Jansen, T.: On the analysis of dynamic restart strategies for evolutionary algorithms. In: Merelo-Guervos, J.J., Adamidis, P., Beyer, H.-G., Fernandez-Villacanas, J.-L., Schwefel H.-P. (eds.) Parallel Problem Solving from Nature—PPSN VII, Granada, Spain, vol. 2439, pp. 33–43, Springer, Berlin (2002)Google Scholar
  23. 23.
    Kawano, A., Seldon, H.L., Clark, G.M., Ramsden, R.T., Raine, C.H. (1998) Intracochlear factors contributing to psychophysical percepts following cochlear implantation. Acta Otolaryngol. 118(3), 313–326CrossRefGoogle Scholar
  24. 24.
    Kiefer, J., VonIlberg, C., Rupprecht, V., Hubner-Egner, J., Knecht, R.: Optimized speech understanding with the cis sampling speech coding strategy in patients with cochlear implants: Effect of variations in stimulation rate and number of channels. Ann. Otol. Rhinol. Laryngol. 109(11), 1009–1020 (2000)Google Scholar
  25. 25.
    Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. In: SPIE Procedings: Intelligent Control and Adaptive Systems, vol. 1196, pp. 289–296. Philadelphia, PA (1989)Google Scholar
  26. 26.
    Lafon, J.C.: Le test phonétique et la mesure de l’audition. Ed. Centrex, Eindhoven (1964)Google Scholar
  27. 27.
    Lawson, D.T., Wilson, B.S., Zerbi, M., Finley, C.C.: Third quaterly progress report: Speech processors for auditory prostheses. Technical Report NIH Contract N01-DC-5-2103 (1996)Google Scholar
  28. 28.
    Loizou, P., Poroy, O., Dorman, M.: The effect of parametric variations of cochlear implant processors on speech understanding. J. Acoust. Soc. Am. 108(2), 790–802 (2000)CrossRefGoogle Scholar
  29. 29.
    Lutton, E., Pilz, M., Levy-Vehel, J.: The fitness map scheme. application to interactive multifractal image denoising. CEC2005, IEEE Congress on Evolutionary Computation is in Edinburgh, UK, vol. 3, pp. 2278–2285, 2–5 Sept (2005)Google Scholar
  30. 30.
    Meyer, Y.: Ondelettes et Opérateurs. Hermann, Paris (1990)Google Scholar
  31. 31.
    Moore, B.C.J.: Perceptual Consequences of Cochlear Damage. Oxford Medical Publication, (1995)Google Scholar
  32. 32.
    Osberger, M.J.: Cochlear implantation in children under the age of two years: Candidacy considerations. Otolaryngol. Head Neck Surg. 117, 145–149 (1997)CrossRefGoogle Scholar
  33. 33.
    Pialoux, P., Chouard, C.H., Meyer, B., Fugain, C.: Indications and results of the multichannel cochlear implant. Acta Otolaryngol 87(3–4), 185–189, Mar–Apr (1979)Google Scholar
  34. 34.
    Poli, R., Cagnoni, S.: Genetic programming with user-driven selection: Experiments on the evolution of algorithms for image enhancement. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 269–277, Stanford University, CA, USA, (1997) Morgan KaufmannGoogle Scholar
  35. 35.
    Roman, S.: La réhabilitation des sourds profonds par implant cochléaire. Thèse de doctorat de médecine, Université de Marseille, Fr (1998)Google Scholar
  36. 36.
    Roux, G.: Synthése et réalisation d’études cliniques sur l’implant cochléaire. Thése de doctorat de médecine, Université de Rennes, Fr (2001)Google Scholar
  37. 37.
    Shannon, R.V., Galvin, J.J. III, Baskent, D.: Holes in hearing. J. Assoc. Res. Otolaryngol. 3(2), 185–199 (2002)CrossRefGoogle Scholar
  38. 38.
    Stickney, G.S., Loizou, P.C., Mishra, L., Assmann, P.F., Shannon, R.V., Opie, J.M.: Effects of electrode design and configuration on channel interactions. Hear. Res. 211, 33–45 (2006)CrossRefGoogle Scholar
  39. 39.
    Takagi, H.: Interactive evolutionary computation: System optimization based on human subjective evaluation. In: Proceedings of the IEEE International Conference on Intelligent Engineering Systems (INES ’98), pp. 1–6, Vienna, Austria (1998)Google Scholar
  40. 40.
    Takagi, H.: Interactive evolution computation: Fusion of the capabilities of ec optimization and human evaluation. In: Proceedings of the IEEE, vol. 89, pp. 1275–1296 (2001)Google Scholar
  41. 41.
    Wall, M.: Matthew’s genetic library.
  42. 42.
    Zwolan, T.A., Collins, L.M., Wakefield, G.H.: Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects. J. Acoust. Soc. Am. 102(6), 3673–3685 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pierrick Legrand
    • 1
    • 2
  • Claire Bourgeois-Republique
    • 3
  • Vincent Péan
    • 4
  • Esther Harboun-Cohen
    • 5
  • Jacques Levy-Vehel
    • 2
  • Bruno Frachet
    • 5
  • Evelyne Lutton
    • 2
  • Pierre Collet
    • 6
  1. 1.IMB, Institut de Mathématiques de BordeauxUMR CNRS 5251, Université de Bordeaux 2Bordeaux cedexFrance
  2. 2.COMPLEX Team – INRIA RocquencourtLe Chesnay cedexFrance
  3. 3.LE2I, UMR 5158 CNRSDijon cedexFrance
  4. 4.CRT InnotechBobigny cedexFrance
  5. 5.Hôpital Avicenne, Service ORLBobignyFrance

Personalised recommendations