, Volume 144, Issue 5, pp 577–589 | Cite as

Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification

  • Kailey E. Becker
  • Mary C. Thomas
  • Samer Martini
  • Tautvydas Shuipys
  • Volodymyr Didorchuk
  • Rachyl M. Shanker
  • Howard M. Laten


Transposable elements (TEs) dominate the landscapes of most plant and animal genomes. Once considered junk DNA and genetic parasites, these interspersed, repetitive DNA elements are now known to play major roles in both genetic and epigenetic processes that sponsor genome variation and regulate gene expression. Knowledge of TE consensus sequences from elements in species whose genomes have not been sequenced is limited, and the individual TEs that are encountered in clones or short-reads rarely represent potentially canonical, let alone, functional representatives. In this study, we queried the Repbase database with eight BAC clones from white clover (Trifolium repens), identified a large number of candidate TEs, and used polymerase chain reaction and Sanger sequencing to create consensus sequences for three new TE families. The results show that TE family consensus sequences can be obtained experimentally in species for which just a single, full-length member of a TE family has been sequenced.


Transposable element Retrotransposon Consensus sequence Polymerase chain reaction Trifolium Clover Sanger sequencing 



KEB, SM, TS, VD, and RMS were supported by Loyola University undergraduate research fellowships. We thank Emily Welebob and Stephanie Vargas for their experimental contributions, Stefan Kanzok for qPCR guidance, and Haley Luebke for helpful suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10709_2016_9926_MOESM1_ESM.docx (59 kb)
Online Resource 1 (DOCX 58 kb)
10709_2016_9926_MOESM2_ESM.eps (4.5 mb)
Online Resource 2 (EPS 4578 kb)
10709_2016_9926_MOESM3_ESM.eps (3.8 mb)
Online Resource 3 (EPS 3929 kb)
10709_2016_9926_MOESM4_ESM.eps (2.5 mb)
Online Resource 4 (EPS 2582 kb)
10709_2016_9926_MOESM5_ESM.eps (3.9 mb)
Online Resource 5 (EPS 3963 kb)
10709_2016_9926_MOESM6_ESM.eps (3.3 mb)
Online Resource 6 (EPS 3350 kb)


  1. Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20:210–224. doi: 10.1101/gad.1380406 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/s0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  3. Basu VP, Song M, Gao L, Rigby ST, Hanson MN, Bambara RA (2008) Strand transfer events during HIV-1 reverse transcription. Virus Res 134:19–38. doi: 10.1016/j.virusres.2007.12.017 CrossRefPubMedGoogle Scholar
  4. Baucom RS et al (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732. doi: 10.1371/journal.pgen.1000732 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beauregard A, Curcio MJ, Belfort M (2008) The take and give between retrotransposable elements and their hosts. Annu Rev Genet 42:587–617. doi: 10.1146/annurev.genet.42.110807.091549 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Becker KE, Laten HM (2015) A Copia retrotransposon family from Trifolium repens—consensus sequence. Repbase Rep 15:1843Google Scholar
  7. Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530. doi: 10.1146/annurev-arplant-050213-035811 CrossRefPubMedGoogle Scholar
  8. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11. doi: 10.1016/S0378-1119(03)00557-2 CrossRefPubMedGoogle Scholar
  9. Casacuberta JM, Vernhettes S, Grandbastien MA (1995) Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J 14:2670–2678PubMedPubMedCentralGoogle Scholar
  10. Dai L, LaCava J, Taylor MS, Boeke JD (2014) Expression and detection of LINE-1 ORF-encoded proteins. Mob Genet Elem. doi: 10.4161/mge.29319 Google Scholar
  11. De Vega JJ et al (2015) Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep 5:17394. doi: 10.1038/srep17394 CrossRefPubMedPubMedCentralGoogle Scholar
  12. DeBarry JD, Liu R, Bennetzen JL (2008) Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the Assisted Automated Assembler of Repeat Families (AAARF) algorithm. BMC Bioinform 9:235. doi: 10.1186/1471-2105-9-235 CrossRefGoogle Scholar
  13. Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21. doi: 10.1007/BF02712670 CrossRefGoogle Scholar
  14. Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079. doi: 10.1101/gr.132102 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J (2010a) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genom 11:113. doi: 10.1186/1471-2164-11-113 CrossRefGoogle Scholar
  16. Du J et al (2010b) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598. doi: 10.1111/j.1365-313X.2010.04263.x CrossRefPubMedGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134:221–234. doi: 10.1016/j.virusres.2007.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:1–14. doi: 10.1186/1471-2105-9-18 CrossRefGoogle Scholar
  20. Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (TrifoliumLeguminosae). Mol Phylogenet Evol 39:688–705. doi: 10.1016/j.ympev.2006.01.004 CrossRefPubMedGoogle Scholar
  21. Ewing A (2015) Transposable element detection from whole genome sequence data. Mob DNA 6:24. doi: 10.1186/s13100-015-0055-3 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Farabaugh PJ (1996) Programmed translational frameshifting. Annu Rev Genet 30:507–528. doi: 10.1146/annurev.genet.30.1.507 CrossRefPubMedGoogle Scholar
  23. Febrer M et al (2007) Construction, characterization, and preliminary BAC-end sequencing analysis of a bacterial artificial chromosome library of white clover (Trifolium repens L.). Genome 50:412–421. doi: 10.1139/g07-013 CrossRefPubMedGoogle Scholar
  24. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368. doi: 10.1146/annurev.genet.40.110405.090448 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Flutre T, Duprat E, Feuillet C, Quesneville H (2011) Considering transposable element diversification in De Novo annotation approaches. PLoS ONE 6:e16526. doi: 10.1371/journal.pone.0016526 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gabriel A, Willems M, Mules EH, Boeke JD (1996) Replication infidelity during a single cycle of Ty1 retrotransposition. Proc Natl Acad Sci USA 93:7767–7771CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gao C et al (2012) Characterization and functional annotation of nested transposable elements in eukaryotic genomes. Genomics 100:222–230. doi: 10.1016/j.ygeno.2012.07.004 CrossRefPubMedGoogle Scholar
  28. Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK (2012) CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res 23:628–637. doi: 10.1101/gr.146985.112 CrossRefPubMedGoogle Scholar
  29. Hand ML et al (2008) Identification of homologous, homoeologous and paralogous sequence variants in an outbreeding allopolyploid species based on comparison with progenitor taxa. Mol Genet Genom 280:293–304. doi: 10.1007/s00438-008-0365-y CrossRefGoogle Scholar
  30. Hand ML, Cogan NO, Sawbridge TI, Spangenberg GC, Forster JW (2010) Comparison of homoeolocus organisation in paired BAC clones from white clover (Trifolium repens L.) and microcolinearity with model legume species. BMC Plant Biol 10:94. doi: 10.1186/1471-2229-10-94 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T (2014) Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. Plant J 79:385–397. doi: 10.1111/tpj.12565 CrossRefPubMedGoogle Scholar
  32. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hoen DR et al (2015) A call for benchmarking transposable element annotation methods. Mob DNA 6:13. doi: 10.1186/s13100-015-0044-6 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hong JJ, Wu TY, Chang TY, Chen CY (2013) Viral IRES prediction system—a web server for prediction of the IRES secondary structure in silico. PLoS ONE 8:e79288. doi: 10.1371/journal.pone.0079288 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675. doi: 10.1146/annurev-genet-110711-155616 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Istvanek J, Jaros M, Krenek A, Repkova J (2014) Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am J Bot 101:327–337. doi: 10.3732/ajb.1300340 CrossRefPubMedGoogle Scholar
  37. Joly-Lopez Z, Bureau TE (2014) Diversity and evolution of transposable elements in Arabidopsis. Chromosome Res 22:203–216. doi: 10.1007/s10577-014-9418-8 CrossRefPubMedGoogle Scholar
  38. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. doi: 10.1159/000084979 CrossRefPubMedGoogle Scholar
  39. Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genom Hum Genet 8:241–259. doi: 10.1146/annurev.genom.8.080706.092416 CrossRefGoogle Scholar
  40. Koga A (2012) Under-representation of repetitive sequences in whole-genome shotgun sequence databases: an illustration using a recently acquired transposable element. Genome 55:172–175. doi: 10.1139/g11-088 CrossRefPubMedGoogle Scholar
  41. Kohany O, Gentles A, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: Repbasesubmitter and Censor. BMC Bioinform 7:474. doi: 10.1186/1471-2105-7-474 CrossRefGoogle Scholar
  42. Kojima KK, Matsumoto T, Fujiwara H (2005) Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1. Mol Cell Biol 25:7675–7686. doi: 10.1128/mcb.25.17.7675-7686.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Komar AA, Hatzoglou M (2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 280:23425–23428. doi: 10.1074/jbc.R400041200 CrossRefPubMedGoogle Scholar
  44. Laten HM, Mogil LS, Wright LN (2009) A shotgun approach to discovering and reconstructing consensus retrotransposons ex novo from dense contigs of short sequences derived from Genbank Genome Survey Sequence database records. Gene 448:168–173. doi: 10.1016/j.gene.2009.06.011 CrossRefPubMedGoogle Scholar
  45. Laten HM, Hand ML, Cogan ROI, Forster JW (2010a) LTR retrotransposons in white clover, Trifolium repens L: TreLTRRT2. Repbase Rep 10:2176–2177Google Scholar
  46. Laten HM, Hand MS, Cogan NO, Forster JW (2010b) LTR retrotransposons in white clover, Trifolium repens L: Copia-1 Tre. Repbase Rep 10:2166–2167Google Scholar
  47. Li R et al (2005) ReAS: recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol 1:e43. doi: 10.1371/journal.pcbi.0010043 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Li PWL, Li J, Timmerman SL, Krushel LA, Martin SL (2006) The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition. Nucl Acids Res 34:853–864. doi: 10.1093/nar/gkj490 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66. doi: 10.1146/annurev.arplant.59.032607.092744 CrossRefPubMedGoogle Scholar
  50. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869. doi: 10.1101/gr.1466204 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Marchler-Bauer A et al (2014) CDD: NCBI’s conserved domain database. Nucl Acids Res 43:D222–226. doi: 10.1093/nar/gku1221 Google Scholar
  52. Martini S, Laten HM (2015) TrepCOPIA3: A Copia retrotransposon family from Trifolium repens—consensus sequence. Repbase Rep 15:1844–1845Google Scholar
  53. Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJM (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519. doi: 10.1016/j.pbi.2007.06.007 CrossRefPubMedGoogle Scholar
  54. McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367. doi: 10.1093/bioinformatics/btf878 CrossRefPubMedGoogle Scholar
  55. Mokrejš M, Mašek T, Vopálenský V, Hlubuček P, Delbos P, Pospíšek M (2010) IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucl Acids Res 38:D131–D136. doi: 10.1093/nar/gkp981 CrossRefPubMedGoogle Scholar
  56. Noma K, Ohtsubo H, Ohtsubo E (2000) ATLN elements LINEs from Arabidopsis thaliana: identification and characterization. DNA Res 7:291–303. doi: 10.1093/dnares/7.5.291 CrossRefPubMedGoogle Scholar
  57. Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793. doi: 10.1093/bioinformatics/btt054 CrossRefPubMedGoogle Scholar
  58. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538. doi: 10.1146/annurev.genet.35.102401.091032 CrossRefPubMedGoogle Scholar
  59. Peterson-Burch BD, Voytas DF (2002) Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol Biol Evol 19:1832–1845CrossRefPubMedGoogle Scholar
  60. Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46:21–42. doi: 10.1146/annurev-genet-110711-155621 CrossRefPubMedGoogle Scholar
  61. Ronquist F et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388. doi: 10.1038/sj.hdy.6800903 CrossRefPubMedGoogle Scholar
  63. SanMiguel P et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768. doi: 10.1126/science.274.5288.765 CrossRefPubMedGoogle Scholar
  64. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45. doi: 10.1038/1695 CrossRefPubMedGoogle Scholar
  65. Schulman AH (2012) Hitching a ride: nonautonomous retrotransposons and parasitism as a lifestyle. In: Grandbastien MA, Casacuberta JM (eds) Plant transposable elements: impact on genome structure and function. Springer, New York, pp 71–88. doi: 10.1007/978-3-641-31842-9_5 CrossRefGoogle Scholar
  66. Senerchia N, Wicker T, Felber F, Parisod C (2013) Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat. Genome Biol Evol 5:1010–1020. doi: 10.1093/gbe/evt064 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Steinbiss S, Kastens S, Kurtz S (2012) LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons. Mob DNA 3:18. doi: 10.1186/1759-8753-3-18 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96. doi: 10.1159/000351318 CrossRefPubMedGoogle Scholar
  70. Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478. doi: 10.1016/j.tplants.2010.05.003 CrossRefPubMedGoogle Scholar
  71. Thomas MC, Laten HM (2015) TrepLINE1: a LINE retrotransposon family from Trifolium repens. Repbase Rep 15:1847Google Scholar
  72. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40:e115. doi: 10.1093/nar/gks596 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643. doi: 10.1073/pnas.0605618103 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Vitte C, Estep MC, Leebens-Mack J, Bennetzen JL (2013) Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes. Ann Bot 112:881–889. doi: 10.1093/aob/mct155 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vitte C, Fustier M-A, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genomics 13:276–295. doi: 10.1093/bfgp/elu002 CrossRefPubMedGoogle Scholar
  76. Vižintin L, Javornik B, Bohanec B (2006) Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci 170:859–866. doi: 10.1016/j.plantsci.2005.12.007 CrossRefGoogle Scholar
  77. Wenke T, Holtgräwe D, Horn AV, Weisshaar B, Schmidt T (2009) An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Mol Biol 71:585–597. doi: 10.1007/s11103-009-9542-6 CrossRefPubMedGoogle Scholar
  78. Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081. doi: 10.1101/gr.6214107 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wicker T, Matthews DE, Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7:561–562. doi: 10.1016/S1360-1385(02)02372-5 CrossRefGoogle Scholar
  80. Wicker T et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi: 10.1038/nrg2165 CrossRefPubMedGoogle Scholar
  81. Williams WM (2014) Trifolium interspecific hybridisation: widening the white clover gene pool. Crop Pasture Sci 65:1091–1106. doi: 10.1071/CP13294 CrossRefGoogle Scholar
  82. Williams WM, Ellison NW, Ansari HA, Verry IM, Hussain SW (2012) Experimental evidence for the ancestry of allotetraploid Trifolium repens and creation of synthetic forms with value for plant breeding. BMC Plant Biol 12:55. doi: 10.1186/1471-2229-12-55 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucl Acids Res 35:W265–W268. doi: 10.1093/nar/gkm286 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yamashita H, Tahara M (2006) A LINE-type retrotransposon active in meristem stem cells causes heritable transpositions in the sweet potato genome. Plant Mol Biol 61:79–94. doi: 10.1007/s11103-005-6002-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kailey E. Becker
    • 1
  • Mary C. Thomas
    • 1
  • Samer Martini
    • 1
  • Tautvydas Shuipys
    • 1
  • Volodymyr Didorchuk
    • 1
  • Rachyl M. Shanker
    • 1
  • Howard M. Laten
    • 1
  1. 1.Department of BiologyLoyola University ChicagoChicagoUSA

Personalised recommendations