, Volume 144, Issue 4, pp 469–476 | Cite as

Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus vellerosus) in Argentina revealed by a set of novel microsatellite loci

  • Maximiliano Nardelli
  • Ezequiel Alejandro Ibáñez
  • Dara Dobler
  • Fabienne Justy
  • Frédéric Delsuc
  • Agustín Manuel Abba
  • Marcelo Hernán Cassini
  • Juan Ignacio Túnez


The screaming hairy armadillo (Chaetophractus vellerosus) is a mammal species containing disjunct and isolated populations. In order to assess the effect of habitat fragmentation and geographic isolation, we developed seven new microsatellite loci isolated from low-coverage genome shotgun sequencing data for this species. Among these loci, six microsatellites were found to be polymorphic with 8–26 alleles per locus detected across 69 samples analyzed from a relictual population of the species located in the northeast of the Buenos Aires Province (Argentina). Mean allelic richness and polymorphic information content were 15 and 0.75, with observed and expected heterozygosities ranging from 0.40 to 0.67 and 0.58 to 0.90, respectively. All loci showed departures from Hardy–Weinberg equilibrium. The analysis of population structure in this relictual population revealed three groups of individuals that are genetically differentiated. These newly developed microsatellites will constitute a very useful tool for the estimation of genetic diversity and structure, population dynamics, social structure, parentage and mating system in this little-studied armadillo species. Such genetic data will be particularly helpful for the development of conservation strategies for this isolated population and also for the endangered Bolivian populations previously recognized as a distinct species (Chaetophractus nationi).


Molecular markers Armadillos Habitat fragmentation Molecular ecology 



We thank L.G. Pagano and M.C. Ezquiaga for their invaluable assistance during fieldwork. Our thanks also extend to the farm owners (Landa Family) and workers that allowed access to their property. Stéphane Garnier and two anonymous reviewers provided comments that helped improved a previous version of the manuscript.


This work has been financially supported by the Centre National de la Recherche Scientifique, Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (PIP No. 11420100100189), Agencia Nacional de Promoción Científica y Tecnológica of Argentina (PICT-2010-1978), Universidad Nacional de Luján, Argentina (Fondos Finalidad 3.5), and Universidad Nacional de La Plata. This study has benefited from an “Investissements d’Avenir” grant managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01). This is contribution ISEM 2016-124-S of the Institut des Sciences de l’Evolution de Montpellier.


  1. Abba AM, Cassini MH (2010) Ecological differences between two sympatric species of armadillos (Xenarthra, Mammalia) in a temperate region of Argentina. Acta Theriol 55:35–44CrossRefGoogle Scholar
  2. Abba AM, Superina M (2010) The 2009/2010 armadillo Red List Assessment. Edentata 11:135–184CrossRefGoogle Scholar
  3. Abba AM, Cassini GH, Cassini MH, Vizcaíno SF (2011) Historia natural del piche llorón Chaetophractus vellerosus (Mammalia: xenarthra: Dasypodidae). Rev Chil Hist Nat 84:51–64CrossRefGoogle Scholar
  4. Abba AM, Cassini GH, Valverde G, Tilak MK, Vizcaíno SF, Superina M, Delsuc F (2015) Systematics of hairy armadillos and the taxonomic status of the Andean hairy armadillo (Chaetophractus nationi). J Mammal 96:673–689CrossRefGoogle Scholar
  5. Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SC (2013) A road map for molecular ecology. Mol Ecol 22:2605–2626CrossRefPubMedGoogle Scholar
  6. Arteaga MC, Piñero D, Eguiarte LE, Gasca J, Medellín RA (2012) Genetic structure and diversity of the nine-banded armadillo in Mexico. J Mammal 93:547–559CrossRefGoogle Scholar
  7. Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates Inc, SunderlandGoogle Scholar
  8. Bilenca D, Codesido M, González Fischer C, Pérez Carusi L, Zufiaurre E, Abba AM (2012) Impactos de la transformación agropecuaria sobre la biodiversidad en la provincia de Buenos Aires. Revista del Museo Argentino de Ciencias Naturales, Nueva Serie 14:189–198Google Scholar
  9. Carlini AA, Vizcaíno SF (1987) A new record of the armadillo Chaetophractus vellerosus in the Buenos Aires Province of Argentine: possible causes for the disjunct distribution. Stud Neotrop Fauna and Environ 22:53–56CrossRefGoogle Scholar
  10. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  11. Chinchilla L, Woodard A, Loughry WJ, Brooks CP, Welch ME (2010) Microsatellite markers for the study of leprosy in nine-banded armadillos. Mol Ecol Resour 10:1098-1105CrossRefPubMedGoogle Scholar
  12. Collevatti RG, Leite KC, de Miranda GH, Rodrigues FH (2007) Evidence of high inbreeding in a population of the endangered giant anteater, Myrmecophaga tridactyla (Myrmecophagidae), from Emas National Park, Brazil. Genet Mol Biol 30:112–120CrossRefGoogle Scholar
  13. Crespo JA (1974) Comentarios sobre nuevas localidades para mamíferos de Argentina y Bolivia. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. Zoología 11:1–31Google Scholar
  14. Earl DA, vonHoldt M (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  17. Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94CrossRefPubMedGoogle Scholar
  18. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gibb GC, Condamine FL, Kuch M, Enk J, Moraes-Barros N, Superina M, Poinar HN, Delsuc F (2016) Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Mol Biol Evol. doi: 10.1093/molbev/msv250 PubMedGoogle Scholar
  21. Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636CrossRefGoogle Scholar
  22. Loughry WJ, Truman RW, McDonough CM, Tilak MK, Garnier S, Delsuc F (2009) Is leprosy spreading among nine-banded armadillos in the southeastern United States? J Wild Dis 45:144–152CrossRefGoogle Scholar
  23. Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659CrossRefGoogle Scholar
  24. Miller MP (2005) Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724CrossRefPubMedGoogle Scholar
  25. Moss WE, Pauli JN, Gutiérrez GA, Young AM, Vaughan C, Herrera G, Peery MZ (2011) Development and characterization of 16 microsatellites for Hoffmann’s two-toed sloth, Choloepus hoffmanni. Conserv Genet Res 3:625–627CrossRefGoogle Scholar
  26. Moss WE, Peery MZ, Gutiérrez-Espeleta GA, Vaughan C, Herrera G, Pauli JN (2012) Isolation and characterization of 18 microsatellite markers for the brown-throated three-toed sloth, Bradypus variegatus. Conserv Genet Res 4:1037–1039CrossRefGoogle Scholar
  27. Pagnutti N, Gallo J, Superina M, Vizcaíno SF, Abba AM (2014) Patrones estacionales de distribución espacial y área de acción del piche llorón, Chaetophractus vellerosus (Cingulata: Dasypodidae), en Magdalena, Buenos Aires, Argentina. Mastozool Neotrop 21:59–65Google Scholar
  28. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD thesis, University of DublinGoogle Scholar
  29. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pérez-Zubieta JC (2011) Intensidad de uso de hábitat del quirquincho andino (Chaetophractus nationi) en zonas aledañas a asentamientos humanos de la provincia de Sur Carangas, Oruro, Bolivia. Edentata 12:28–35CrossRefGoogle Scholar
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  32. Prodöhl PA, Loughry WJ, Mcdonough CM, Nelson WS, Avise JC (1996) Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc R Soc Lond B 263:1643–1649CrossRefGoogle Scholar
  33. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New YorkGoogle Scholar
  35. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123CrossRefPubMedPubMedCentralGoogle Scholar
  36. Superina M, Pagnutti N, Abba AM (2014) What do we know about armadillos? An analysis of four centuries of knowledge about a group of South American mammals, with emphasis on their conservation. Mammal Rev 44:69–80CrossRefGoogle Scholar
  37. Viglizzo EF, Frank FC, Carreño LV, Jobbágy EG, Pereyra H, Clatt J, Pincén D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Change Biol 17:959–973CrossRefGoogle Scholar
  38. Waples RS (2015) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106:1–19CrossRefPubMedGoogle Scholar
  39. You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinf 9:253CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maximiliano Nardelli
    • 1
  • Ezequiel Alejandro Ibáñez
    • 1
  • Dara Dobler
    • 1
  • Fabienne Justy
    • 2
  • Frédéric Delsuc
    • 2
  • Agustín Manuel Abba
    • 3
  • Marcelo Hernán Cassini
    • 1
    • 4
  • Juan Ignacio Túnez
    • 1
  1. 1.Departamento de Ciencias BásicasUniversidad Nacional de LujánLujánArgentina
  2. 2.Institut des Sciences de l’Evolution, UMR 5554, CNRS, IRD, EPHEUniversité de MontpellierMontpellierFrance
  3. 3.Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT-CONICETUniversidad Nacional de La PlataLa PlataArgentina
  4. 4.Laboratorio de Biología del ComportamientoIBYME-CONICETBuenos AiresArgentina

Personalised recommendations