Advertisement

Genetica

, Volume 144, Issue 1, pp 71–83 | Cite as

Gene structure and evolution of transthyretin in the order Chiroptera

  • Jiraporn Khwanmunee
  • Ladda Leelawatwattana
  • Porntip Prapunpoj
Article

Abstract

Bats are mammals in the order Chiroptera. Although many extensive morphologic and molecular genetics analyses have been attempted, phylogenetic relationships of bats has not been completely resolved. The paraphyly of microbats is of particular controversy that needs to be confirmed. In this study, we attempted to use the nucleotide sequence of transthyretin (TTR) intron 1 to resolve the relationship among bats. To explore its utility, the complete sequences of TTR gene and intron 1 region of bats in Vespertilionidae: genus Eptesicus (Eptesicus fuscus) and genus Myotis (Myotis brandtii, Myotis davidii, and Myotis lucifugus), and Pteropodidae (Pteropus alecto and Pteropus vampyrus) were extracted from the retrieved sequences, whereas those of Rhinoluphus affinis and Scotophilus kuhlii were amplified and sequenced. The derived overall amino sequences of bat TTRs were found to be very similar to those in other eutherians but differed from those in other classes of vertebrates. However, missing of amino acids from N-terminal or C-terminal region was observed. The phylogenetic analysis of amino acid sequences suggested bat and other eutherian TTRs lineal descent from a single most recent common ancestor which differed from those of non-placental mammals and the other classes of vertebrates. The splicing of bat TTR precursor mRNAs was similar to those of other eutherian but different from those of marsupial, bird, reptile and amphibian. Based on TTR intron 1 sequence, the inferred evolutionary relationship within Chiroptera revealed more closely relatedness of R. affinis to megabats than to microbats. Accordingly, the paraphyly of microbats was suggested.

Keywords

Chiroptera Evolution Intron Phylogenetic Splicing Transthyretin 

Abbreviations

FITC

Fluorescein-5-isothiocyanate

ML

Maximum likelihood

MMLV RT

Moloney murine leukemia virus reverse transcriptase

MP

Maximum parsimony

NJ

Neighbor-joining

T3

Triiodothyronine

T4

Thyroxine

TBG

Thyroxine-binding globulin

THs

Thyroid hormones

THDPs

Thyroid hormone distributor proteins

TTR

Transthyretin

Notes

Acknowledgments

This work was supported by the National Research Council of Thailand, Prince of Songkla University, the Office of the Higher Education Commission (the Strategic Scholarships Fellowships Frontier Research Networks), and the Excellent Biochemistry Program Fund of Prince of Songkla University, Thailand.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10709_2015_9879_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 31 kb)
10709_2015_9879_MOESM2_ESM.pdf (123 kb)
Supplementary material 2 (PDF 122 kb)
10709_2015_9879_MOESM3_ESM.pdf (207 kb)
Supplementary material 3 (PDF 207 kb)
10709_2015_9879_MOESM4_ESM.pdf (135 kb)
Supplementary material 4 (PDF 134 kb)
10709_2015_9879_MOESM5_ESM.pdf (328 kb)
Supplementary material 5 (PDF 327 kb)

References

  1. Aldred AR, Prapunpoj P, Schreiber G (1997) Evolution of shorter and more hydrophilic transthyretin N-termini by stepwise conversion of exon 2 into intron 1 sequences (shifting the 3′splice site of intron 1). Eur J Biochem 246:401–409CrossRefPubMedGoogle Scholar
  2. Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X, Janke A (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156PubMedCentralCrossRefPubMedGoogle Scholar
  3. Brack CM, Duan W, Hulbert AJ, Schreiber G (1995) Wallaby transthyretin. Comp Biochem Physiol 110B:523–529CrossRefGoogle Scholar
  4. Buffenstein R, Pinto M (2009) Endocrine function in naturally long-living small mammals. Mol Cell Endocrinol 299:101–111PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bulmer M (1987) A statistical analysis of nucleotide sequences of introns and exons in human genes. Mol Biol Evol 4:395–405PubMedGoogle Scholar
  6. Burns JM, Baker RJ, Bleier WJ (1972) Hormonal control of “delayed development” in Macrotus waterhousii: I. Changes in plasma thyroxine during pregnancy and lactation. Gen Comp Endocrinol 18:54–58CrossRefPubMedGoogle Scholar
  7. Cabria MT, Rubines J, Gómez-Moliner B, Zardoya R (2006) On the phylogenetic position of a rare Iberian endemic mammal, the Pyrenean desman (Galemys pyrenaicus). Gene 375:1–13CrossRefPubMedGoogle Scholar
  8. Chang L, Munro SL, Richardson SJ, Schreiber G (1999) Evolution of thyroid hormone binding by transthyretins in birds and mammals. Eur J Biochem 259:534–542CrossRefPubMedGoogle Scholar
  9. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159CrossRefPubMedGoogle Scholar
  10. Coulombe-Huntington J, Majewski J (2007) Characterization of intron loss events in mammals. Genome Res 17:23–32PubMedCentralCrossRefPubMedGoogle Scholar
  11. Damassa DA, Gustafson AW, Kwiecinski GG, Gagin GA (1995) Seasonal influences on the control of plasma sex hormone-binding globulin by T4 in male little brown bats. Am J Physiol 268:R1303–R1309PubMedGoogle Scholar
  12. Dickson PW, Howlett GJ, Schreiber G (1985) Rat transthyretin (prealbumin): molecular cloning, nucleotide sequence, and gene expression in liver and brain. J Biol Chem 260:8214–8219PubMedGoogle Scholar
  13. Duan W, Cole T, Schreiber G (1989) Cloning and nucleotide sequencing of transthyretin (prealbumin) cDNA from rat choroid plexus and liver. Nucleic Acids Res 17:3979PubMedCentralCrossRefPubMedGoogle Scholar
  14. Duan W, Achen MG, Richardson SJ, Lawrence MC, Wettenhall REH, Jaworowski A, Schreiber G (1991) Isolation, characterization, cDNA cloning and gene expression of an avian transthyretin: implications for the evolution of structure and function of transthyretin in vertebrates. Eur J Biochem 200:679–687CrossRefPubMedGoogle Scholar
  15. Duan W, Richardson SJ, Babon JJ, Heyes RJ, Southwell BR, Harms PJ, Wettenhall REH, Dziegielewska KM, Selwood L, Bradley AJ, Brack CM, Schreiber G (1995) Evolution of transthyretin in marsupials. Eur J Biochem 227:396–406CrossRefPubMedGoogle Scholar
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralCrossRefPubMedGoogle Scholar
  17. Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Mol Phylogenet Evol 9:414–426CrossRefPubMedGoogle Scholar
  18. Fung W-P, Thomas T, Dickson PW, Aldred AR, Milland J, Dziadek M, Power B, Hudson P, Schreiber G (1988) Structure and expression of the rat transthyretin (prealbumin) gene. J Biol Chem 263:480–488PubMedGoogle Scholar
  19. Hallström BM, Schneider A, Zoller S, Janke A (2011) A genomic approach to examine the complex evolution of laurasiatherian mammals. PLoS One 6:e28199. doi: 10.1371/journal.pone.0028199 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Hassanin A, An J, Ropiquet A, Nguyen TT, Couloux A (2013) Combining multiple autosomal introns for studying shallow phylogeny and taxonomy of Laurasiatherian mammals: application to the tribe Bovini (Cetartiodactyla, Bovidae). Mol Phylogenet Evol 66:766–775CrossRefPubMedGoogle Scholar
  21. Hassanin A, Khouider S, Gembu GC, Goodman SM, Kadjo B, Nesi N, Pourrut X, Nakouné E, Bonillo C (2015) The comparative phylogeography of fruit bats of the tribe Scotonycterini (Chiroptera, Pteropodidae) reveals cryptic species diversity related to African Pleistocene forest refugia. C R Biol 338:197–211CrossRefPubMedGoogle Scholar
  22. Hutcheon JM, Kirsch JA, Pettigrew JD (1998) Base-compositional biases and the bat problem. III. The questions of microchiropteran monophyly. Philos Trans R Soc Lond B Biol Sci 353:607–617PubMedCentralCrossRefPubMedGoogle Scholar
  23. Ifuta NB, Gevaerts H, Kühn ER (1988) Thyroid hormones, testosterone, and estradiol-17 beta in plasma of Epomops franqueti (Tomes, 1860) (Chiroptera) in the rain forest of the Equator. Gen Comp Endocrinol 69:378–380CrossRefPubMedGoogle Scholar
  24. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  25. Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872PubMedCentralCrossRefPubMedGoogle Scholar
  26. Kwiecinski GG, Damassa DA, Gustafson AW (1986) Control of sex steroid-binding protein (SBP) in the male little brown bat: relationship of plasma thyroxine levels to the induction of plasma SBP in immature males. J Endocrinol 110:271–278CrossRefPubMedGoogle Scholar
  27. Leelawatwattana L, Praphanphoj V, Prapunpoj P (2011) Effect of the N-terminal sequence on the binding affinity of transthyretin for human retinol-binding protein. FEBS J 278:3337–3347CrossRefPubMedGoogle Scholar
  28. Lin YH, McLenachan PA, Gore AR, Phillips MJ, Ota R, Hendy MD, Penny D (2002) Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol Biol Evol 19:2060–2070CrossRefPubMedGoogle Scholar
  29. Manzon RG, Neuls TM, Manzon LA (2007) Molecular cloning, tissue distribution, and developmental expression of lamprey transthyretins. Gen Comp Endocrinol 151:55–65CrossRefPubMedGoogle Scholar
  30. Mita S, Maeda S, Shimada K, Araki S (1984) Cloning and sequence analysis of cDNA for human prealbumin. Biochem Biophys Res Commun 124:558–564CrossRefPubMedGoogle Scholar
  31. Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29:1037–1047CrossRefPubMedGoogle Scholar
  32. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351CrossRefPubMedGoogle Scholar
  33. Narita Y, Oda S, Takenaka O, Kageyama T (2001) Phylogenetic position of Eulipotyphla inferred from the cDNA sequences of pepsinogens A and C. Mol Phylogenet Evol 21:32–42CrossRefPubMedGoogle Scholar
  34. Nery MF, González DJ, Hoffmann FG, Opazo JC (2012) Resolution of the laurasiatherian phylogeny: evidence from genomic data. Mol Phylogenet Evol 64:685–689CrossRefPubMedGoogle Scholar
  35. Nesi N, Kadjo B, Pourrut X, Leroy E, Pongombo Shongo C, Cruaud C, Hassanin A (2013) Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) inferred from mitochondrial and nuclear markers. Mol Phylogenet Evol 66:126–137CrossRefPubMedGoogle Scholar
  36. O′Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667CrossRefPubMedGoogle Scholar
  37. Onuma M, Cao Y, Hasegawa M, Kusakabe S (2000) A close relationship of Chiroptera with Eulipotyphla (Core Insectivora) suggested by four mitochondrial genes. Zoolog Sci 17:1327–1332CrossRefGoogle Scholar
  38. Prapunpoj P, Leelawatwattana L (2009) Evolutionary changes to transthyretin: structure-function relationships. FEBS J 276:5330–5341CrossRefPubMedGoogle Scholar
  39. Prapunpoj P, Richardson SJ, Fumagalli L, Schreiber G (2000a) The evolution of the thyroid hormone distributor protein transthyretin in the order Insectivora, class Mammalia. Mol Biol Evol 17:1199–1209CrossRefPubMedGoogle Scholar
  40. Prapunpoj P, Yamauchi K, Nishiyama N, Richardson SJ, Schreiber G (2000b) Evolution of structure, ontogeny of gene expression, and function of Xenopus laevis transthyretin. Am J Physiol Regul Integr Comp Physiol 279:R2026–R2041PubMedGoogle Scholar
  41. Prapunpoj P, Richardson SJ, Schreiber G (2002) Crocodile transthyretin: structure, function, and evolution. Am J Physiol Regul Integr Comp Physiol 283:R885–R896CrossRefPubMedGoogle Scholar
  42. Prapunpoj P, Leelawatwatana L, Schreiber G, Richardson SJ (2006) Change in structure of the N-terminal region of transthyretin produces change in affinity of transthyretin to T4 and T3. FEBS J 273:4013–4023CrossRefPubMedGoogle Scholar
  43. Richardson SJ (2008) Marsupial models for understanding evolution of thyroid hormone distributor proteins. Mol Cell Endocrinol 293:32–42CrossRefPubMedGoogle Scholar
  44. Richardson SJ (2009) Evolutionary changes to transthyretin: evolution of transthyretin biosynthesis. FEBS J 276:5342–5356CrossRefPubMedGoogle Scholar
  45. Richardson SJ (2015) Tweaking the structure to radically change the function: the evolution of transthyretin from 5-hydroxyisourate hydrolase to triiodothyronine distributor to thyroxine distributor. Front Endocrinol (Lausanne) 5:245. doi: 10.3389/fendo.2014.00245 Google Scholar
  46. Richardson SJ, Hennebry SC, Smith BJ, Wright HM (2005) Evolution of the thyroid hormone distributor protein transthyretin in microbes, C. elegans, and vertebrates. Ann N Y Acad Sci 1040:448–451CrossRefPubMedGoogle Scholar
  47. Richardson SJ, Wijayagunaratne RC, D’Souza DG, Darras VM, Van Herck SL (2015) Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters. Front Neurosci 9:66. doi: 10.3389/fnins.2015.00066 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Roy SW, Gilbert W (2005) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102:5773–5778PubMedCentralCrossRefPubMedGoogle Scholar
  49. Roy SW, Penny D (2007) Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171–181CrossRefPubMedGoogle Scholar
  50. Sambrook I, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NYGoogle Scholar
  51. Santos CR, Power DM (1999) Identification of transthyretin in fish (Sparus aurata): cDNA cloning and characterisation. Endocrinology 140:2430–2433CrossRefPubMedGoogle Scholar
  52. Sasaki H, Yoshioka N, Takagi Y, Sakaki Y (1985) Structure of the chromosomal gene for human serum prealbumin. Gene 37:91–197CrossRefGoogle Scholar
  53. Singh UP, Krishna A, Bhatnagar KP (2002) Seasonal changes in thyroid activity in the female sheath-tailed bat, Taphozous longimanus (Chiroptera: emballonuridae). Acta Biol Hung 53:267–278CrossRefPubMedGoogle Scholar
  54. Smith DS (1977) Enhancement fluoroimmunoassay of thyroxine. FEBS Lett 77:25–27CrossRefPubMedGoogle Scholar
  55. Springer MS (2013) Phylogenetics: bats united, microbats divided. Curr Biol 23:R999–R1001CrossRefPubMedGoogle Scholar
  56. Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW (2001) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241–6246PubMedCentralCrossRefPubMedGoogle Scholar
  57. Steiner C, Tilak MK, Douzery EJ, Catzeflis FM (2005) New DNA data from a transthyretin nuclear intron suggest an Oligocene to Miocene diversification of living South America opossums (Marsupialia: didelphidae). Mol Phylogenet Evol 35:363–379CrossRefPubMedGoogle Scholar
  58. Tamura K, Kumar S (2002) Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol Biol Evol 19:1727–1736CrossRefPubMedGoogle Scholar
  59. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  60. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035PubMedCentralCrossRefPubMedGoogle Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  62. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192CrossRefPubMedGoogle Scholar
  63. Teeling EC, Madsen O, Van den Bussche RA, de Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci USA 99:1431–1436PubMedCentralCrossRefPubMedGoogle Scholar
  64. Teeling EC, Springer MS, Madsen O, Bates P, O’brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584CrossRefPubMedGoogle Scholar
  65. Tsagkogeorga G, Parker J, Stupka E, Cotton JA, Rossiter SJ (2013) Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr Biol 23:2262–2267CrossRefPubMedGoogle Scholar
  66. Tsuzuki T, Mita S, Maeda S, Araki S, Shimada K (1985) Structure of the human prealbumin gene. J Biol Chem 260:12224–12227PubMedGoogle Scholar
  67. Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5CrossRefPubMedGoogle Scholar
  68. Walton AH, Nedbal MA, Honeycutt RL (2000) Evidence from intron 1 of the nuclear transthyretin (Prealbumin) gene for the phylogeny of African mole-rats (Bathyergidae). Mol Phylogenet Evol 16:467–474CrossRefPubMedGoogle Scholar
  69. Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R (2006) Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci USA 103:3203–3208PubMedCentralCrossRefPubMedGoogle Scholar
  70. Willis RE (2009) Transthyretin gene (TTR) intron 1 elucidates crocodylian phylogenetic relationships. Mol Phylogenet Evol 53:1049–1054PubMedCentralCrossRefPubMedGoogle Scholar
  71. Yamauchi K, Kasahara T, Hayashi H, Horiuchi R (1993) Purification and characterization of a 3,5,3′-l-triiodothyronine-specific binding protein from bullfrog tadpole plasma: a homolog of mammalian transthyretin. Endocrinology 132:2254–2261PubMedGoogle Scholar
  72. Zhou X, Xu S, Xu J, Chen B, Zhou K, Yang G (2012) Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the laurasiatherian mammals. Syst Biol 61:150–164PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jiraporn Khwanmunee
    • 1
  • Ladda Leelawatwattana
    • 1
  • Porntip Prapunpoj
    • 1
  1. 1.Department of Biochemistry, Faculty of SciencePrince of Songkla UniversityHat YaiThailand

Personalised recommendations