, Volume 143, Issue 6, pp 657–669 | Cite as

Domestication of small-seeded lima bean (Phaseolus lunatus L.) landraces in Mesoamerica: evidence from microsatellite markers

  • Rubén H. Andueza-Noh
  • Jaime Martínez-Castillo
  • María I. Chacón-Sánchez


Previous studies have suggested that the Mesoamerican small-seeded landraces of Lima bean may have been domesticated more than once in Mesoamerica, once in central-western Mexico and another one in an area between Guatemala and Costa Rica. However, these findings were based on sequencing of only one locus from nuclear DNA, and additional confirmation was needed. Here we contribute with additional data on the origin of the Mesoamerican landraces and document the founder effect due to domestication. We characterized 62 domesticated, 87 wild and six weedy Lima bean accessions with ten microsatellite loci. Genetic relationships were analyzed using genetic distances and Bayesian clustering approaches. Domestication bottlenecks were documented using inter-population comparisons and M ratios. The results support at least one domestication event in the area of distribution of gene pool MI in central-western Mexico and also show that some landraces are genetically related to wild accessions of gene pool MII. Also, our data support founder effects due to domestication in Mesoamerican Lima bean landraces. Although we could not establish more specifically the place of origin of the Mesoamerican Lima bean landraces, our results show that these are not a genetically homogeneous group, a finding that may be compatible with a scenario of more than one domestication event accompanied by gene flow. The complex genetic makeup of landraces that we found indicates that a more comprehensive geographic and genomic sampling is needed in order to establish how domestication processes and gene flow have shaped the current genetic structure of landraces.


Crop domestication Bayesian clustering Genetic distance Founder effect SSR markers Wild ancestors 



The first author thanks Ciencia Básica-CONACYT (Project No. 82642) and the National Geographic Society (Grant No. 8622-09) for the economic support to carry out this research. The authors thank the International Center for Tropical Agriculture, Drs. Rogelio Lépiz and Jorge Acosta for providing seed samples. The first author thanks Julian Coello Coello and Filogonio May Pat for technical support in the field and laboratory work.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10709_2015_9863_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 58 kb)


  1. Aguilar-Meléndez A, Morrell PL, Roose ML, Kim SC (2009) Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Am J Bot 96:1190–1202CrossRefPubMedGoogle Scholar
  2. Andueza-Noh RH, Serrano-Serrano ML, Chacón Sánchez MI, Sánchez del Pino I, Camacho-Pérez L, Coello-Coello J, Mijangos Cortes JO, Debouck DG, Martínez-Castillo J (2013) Multiple domestications of the Mesoamerican gene pool of lima bean (Phaseolus lunatus L.): evidence from chloroplast DNA sequences. Genet Resour Crop Evol 60:1069–1086CrossRefGoogle Scholar
  3. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233PubMedCentralPubMedGoogle Scholar
  4. Debouck DG (2008) Notes sur les différents taxons de Phaseolus à partir des Herbiers-Section Paniculati. 2008. Disponible en: URL:
  5. Debouck DG, Maquet A, Posso CE (1989) Biochemical evidence for two different gene pools in Lima beans, Phaseolus lunatus L. Ann Rep Bean Improv Coop 32:58–59Google Scholar
  6. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  7. Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull 19:11–15Google Scholar
  8. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  10. Felsenstein J (1989) PHYLIP - phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  11. Fofana B, Du Jardin P, Baudoin JP (2001) Genetic diversity in the Lima bean (Phaseolus lunatus L.) as revealed by chloroplast DNA (cpDNA) variations. Genet Resour Crop Evol 48:437–445CrossRefGoogle Scholar
  12. Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae–Papilionoideae) in North America, Mexico, and Central America. Bot. Res. Inst., Fort Worth, TX. Taxonomy, distribution, and ecology of the genus PhaseolusGoogle Scholar
  13. Gao H, Williamson S, Bustamante CD (2007) A Markov chain monte carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651PubMedCentralCrossRefPubMedGoogle Scholar
  14. Gao H, Bryc K, Bustamante CD (2011) On identifying the optimal number of population clusters via the deviance information criterion. PLoS ONE 6:e21014PubMedCentralCrossRefPubMedGoogle Scholar
  15. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  16. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  17. Gutiérrez-Salgado A, Gepts P, Debouck DG (1995) Evidence for two gene pools of the Lima bean, Phaseolus lunatus L., in the Americas. Genet Resour Crop Evol 42:15–28CrossRefGoogle Scholar
  18. Hardy O, Dubois S, Zoro-Bi AI, Baudoin JP, Wright S (1997) Gene dispersal and its consequences on the genetic structure of wild populations of Lima bean (Phaseolus lunatus) in Costa Rica. Plant Genet Resour Newsl 109:1–6Google Scholar
  19. Hawley DM, Hanley D, Dhondt AA, Lovette IJ (2006) Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Mol Ecol 15:263–275CrossRefPubMedGoogle Scholar
  20. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  21. Kaplan L (1965) Archeology and domestication in American Phaseolus (beans). Econ Bot 19:358–368CrossRefGoogle Scholar
  22. Kaplan L, Lynch TF (1999) Phaseolus (Fabaceae) in archaeology: AMS. Econ Bot 53:261–272CrossRefGoogle Scholar
  23. Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992CrossRefPubMedGoogle Scholar
  24. Kwak M, Kami JA, Gepts P (2009) The putative Mesoamerican domestication center of Phaseolus vulgaris L. is located in the Lerma—Santiago Basin of Mexico. Crop Sci 49:554–563CrossRefGoogle Scholar
  25. Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199CrossRefGoogle Scholar
  26. Martínez-Castillo J, Zizumbo-Villarreal D, Perales-Rivera H, Colunga-Garcíamarin P (2004) Intraspecific diversity and morpho-phenological variation in Phaseolus lunatus L. from the Yucatan peninsula. Mex Econ Bot 58:354–380CrossRefGoogle Scholar
  27. Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P, Delgado-Valerio P, Colunga-GarcíaMarín P (2006) Structure and genetic diversity of wild populations of Lima Bean (Phaseolus lunatus L.) from the Yucatan peninsula Mexico. Crop Sci 46:1071–1080CrossRefGoogle Scholar
  28. Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P, Colunga-GarcíaMarín P (2007) Gene flow and genetic structure in the wild–weedy–domesticated complex of Lima bean (Phaseolus lunatus L.) in its Mesoamerican center of domestication and diversity. Crop Sci 47:58–66CrossRefGoogle Scholar
  29. Martínez-Castillo J, Camacho-Pérez L, Villanueva-Viramontes S, Andueza-Noh RH, Chacón Sánchez MI (2014) Genetic structure within the Mesoamerican gene pool of wild Phaseolus lunatus (Fabaceae) from Mexico as revealed by microsatellite markers: implications for conservation and the domestication of the species. Am J Bot 101:851–864CrossRefPubMedGoogle Scholar
  30. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99:6080–6084PubMedCentralCrossRefPubMedGoogle Scholar
  31. Motta-Aldana JR, Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG (2010) Multiple origins of Lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50:1773–1787CrossRefGoogle Scholar
  32. Muñoz LC, Duque MC, Debouck DG, Blair MW (2006) Taxonomy of tepary bean and wild relatives as determined by amplified fragment length polymorphism (AFLP) markers. Crop Sci 46:1744–1754CrossRefGoogle Scholar
  33. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  34. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedCentralCrossRefPubMedGoogle Scholar
  35. Pickersgill B (1969) The archaeological record of chili peppers (Capsicum spp.) and the sequence of plant domestication in Peru. Am Antiq 34(1):54–61CrossRefGoogle Scholar
  36. Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci 98:2101–2103PubMedCentralCrossRefPubMedGoogle Scholar
  37. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium BP maize from the central balsas river valley, Mexico. Proc Natl Acad Sci 106:5019–5024PubMedCentralCrossRefPubMedGoogle Scholar
  38. Pohl MD, Pope KO, Jones JG, Jacob JS, Piperno DR, deFrance SD, Lentz DL, Gifford JA, Danforth ME, Josserand JK (1996) Early agriculture in the maya lowlands. Lat Am Antiq 7(4):355–372CrossRefGoogle Scholar
  39. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  40. Rambaut A, Drummond AJ (2014) FigTree. Version 1.4. Available at
  41. Rosemberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  42. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  43. Sauer JD (1993) Historical geography of crop plants. CRC, Boca RatonGoogle Scholar
  44. Schmit V, Debouck DG (1991) Observations on the origin of Phaseolus polyanthus Greenman. Econ Bot 45:345–364CrossRefGoogle Scholar
  45. Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Chacón Sánchez MI (2010) Gene pools in wild Lima bean (Phaseolus lunatus L.) from the Americas: evidences for an andean origin and past migrations. Mol Phylogenet Evol 54:76–87CrossRefPubMedGoogle Scholar
  46. Serrano-Serrano ML, Andueza-Noh RH, Martínez-Castillo J, Debouck DG, Chacón Sánchez MI (2012) Evolution and domestication of Lima bean in Mexico: evidence from ribosomal DNA. Crop Sci 52:1698–1712CrossRefGoogle Scholar
  47. Smith BD (1997) The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 276:932–934CrossRefGoogle Scholar
  48. Smith BD (2005) Reassessing coxcatlan cave and the early history of domesticated plants in Mesoamerica. Proc Natl Acad Sci USA 102:9438–9445PubMedCentralCrossRefPubMedGoogle Scholar
  49. Spataro G, Tiranti B, Arcaleni P, Bellucci E, Attene G, Papa R, Zeuli PS, Negri V (2011) Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor Appl Genet 122:1281–1291CrossRefPubMedGoogle Scholar
  50. Zizumbo-Villarreal D, Colunga-GarcíaMarín P (2010) Origin of agriculture and plant domestication in West Mesoamerica. Genet Resour Crop Evol 57:813–825CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rubén H. Andueza-Noh
    • 1
  • Jaime Martínez-Castillo
    • 2
  • María I. Chacón-Sánchez
    • 3
  1. 1.Instituto Tecnológico de ConkalConkalMexico
  2. 2.Centro de Investigación Científica de YucatánMéridaMexico
  3. 3.Universidad Nacional de Colombia - Bogotá, Facultad de Ciencias Agrarias - Departamento de AgronomíaBogotáColombia

Personalised recommendations