, Volume 143, Issue 4, pp 441–451 | Cite as

Genetic variability and phenotypic plasticity of metric thoracic traits in an invasive drosophilid in America

  • Blanche Christine Bitner-Mathé
  • Jean Robert David


Thermal phenotypic plasticity of 5 metric thoracic traits (3 related to size and 2 to pigmentation) was investigated in Zaprionus indianus with an isofemale line design. Three of these traits are investigated for the first time in a drosophilid, i.e. thorax width and width of pigmented longitudinal white and black stripes. The reaction norms of white and black stripes were completely different: white stripes were insensitive to growth temperature while the black stripes exhibited a strong linear decrease with increasing temperatures. Thorax width exhibited a concave reaction norm, analogous but not identical to those of wing length and thorax length: the temperatures of maximum value were different, the highest being for thorax width. All traits exhibited a significant heritable variability and a low evolvability. Sexual dimorphism was very variable among traits, being nil for white stripes and thorax width, and around 1.13 for black stripes. The ratio thorax length to thorax width (an elongation index) was always >1, showing that males have a more rounded thorax at all temperatures. Black stripes revealed a significant increase of sexual dimorphism with increasing temperature. Shape indices, i.e. ratios between size traits all exhibited a linear decrease with temperature, the least sensitive being the elongation index. All these results illustrate the complexity of developmental processes but also the analytical strength of biometrical plasticity studies in an eco-devo perspective.


Drosophila Temperature Isofemale lines Sex dimorphism Zaprionus indianus Pigmentation Body size 



We thank Amir Yassin for thoughtful comments on early drafts. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Comite Français d’´Evaluation de la Coopéation Universitaire avec le Brésil (COFECUB). This paper results from a French–Brazilian cooperation programme on Zaprionus.


  1. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, New YorkCrossRefGoogle Scholar
  2. Angilletta MJ, Dunham AE (2003) The temperature size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342PubMedCrossRefGoogle Scholar
  3. Angilletta MJ, Sears MW (2004) Evolution of thermal reaction norms for growth rate and body size in ectotherms: an introduction to the symposium. Integr Comp Biol 44:401–402PubMedCrossRefGoogle Scholar
  4. Araripe LO, Klaczko LB, Moreteau B, David JR (2004) Male sterility thresholds in a tropical cosmopolitan drosophilid, Zaprionus indianus. J Therm Biol 29:73–80CrossRefGoogle Scholar
  5. Bächli G, Vilela CR, Escher SA, Saura A (2004) The Drosophilidae (Diptera) of Fennoscandia and Denmark. Brill, LeidenGoogle Scholar
  6. Bitner-Mathé BC, Pexioto AA, Klaczko LB (1995) Morphological variation in a natural population of Drosophila mediopunctata: altitudinal cline, temporal changes, and influence of chromosomal inversions. Heredity 75:54–61PubMedCrossRefGoogle Scholar
  7. Chakir M, Negoua H, Moreteau B, David JR (2008) Quantitative morphometrical analysis of a North African population of Drosophila melanogaster: sexual dimorphism, and comparison with European populations. J Genet 87:373–382PubMedCrossRefGoogle Scholar
  8. Commar LS, Galego LGC, Ceron CR, Carareto CMA (2012) Taxonomic and evolutionary analysis of Zaprionus indianus and its colonization of Palearctic and Neotropical regions. Genet Mol Biol 35:395–406PubMedCentralPubMedCrossRefGoogle Scholar
  9. David JR, Capy P (1988) Genetic variation of Drosophila melanogaster natural populations. Trends Genet 4:106–111PubMedCrossRefGoogle Scholar
  10. David JR, Gibert P, Gravot E, Petavy G, Morin JP, Karan D, Moreteau B (1997) Phenotypic plasticity and developmental temperature in Drosophila: analysis and significance of reaction norms of morphometrical traits. J Therm Biol 22:41–451CrossRefGoogle Scholar
  11. David JR, Gibert P, Moreteau B (2004a) Evolution of reaction norms. In: DeWitt TJ, Scheiner S (eds) Phenotypic plasticity, functional and conceptual approaches. Oxford University Press, New York, pp 50–63Google Scholar
  12. David JR, Allemand R, Capy P, Chakir M, Gibert P, Petavy G, Moreteau B (2004b) Comparative life histories and ecophysiology of Drosophila melanogaster and D. simulans. Genetica 120:151–163PubMedCrossRefGoogle Scholar
  13. David JR, Gibert P, Legout H, Petavy G, Capy P, Moreteau B (2005) Isofemale lines in Drosophila: an empirical approach to quantitative trait analysis in natural populations. Heredity 94:3–12PubMedCrossRefGoogle Scholar
  14. David JR, Legout H, Moreteau B (2006a) Phenotypic plasticity of body size in a temperate population of Drosophila melanogaster: when the temperature-size rule does not apply. J Genet 85:9–23PubMedCrossRefGoogle Scholar
  15. David JR, Araripe LO, Bitner-Mathe BC, Capy P, Goni B, Klaczko LB, Legout H, Martins MB, Vouidibio J, Yassin A, Moreteau B (2006b) Quantitative trait analysis and geographic variability of natural populations of Zaprionus indianus, a recent invader in Brazil. Heredity 96:53–62PubMedGoogle Scholar
  16. David JR, Araripe LO, Bitner-Mathe BC, Goni B, Klaczko LB, Legout H, Martins MB, Vouidibio J, Yassin A, Moreteau B (2006c) Sexual dimorphism of body size and sternopleural bristle number: a comparison of geographic populations of an invasive cosmopolitan drosophilid. Genetica 128:109–122PubMedCrossRefGoogle Scholar
  17. David JR, Yassin A, Moreteau JC, Legout H, Moreteau B (2011) Thermal phenotypic plasticity of body size in Drosophila melanogaster: sexual dimorphism and genetic correlations. J Genet 90:295–302PubMedCrossRefGoogle Scholar
  18. DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New YorkGoogle Scholar
  19. Gibert P, Capy P, Imasheva A, Moreteau B, Morin JP, Pétavy G, David JR (2004) Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity. Genetica 120:165–179PubMedCrossRefGoogle Scholar
  20. Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nat Rev Genet 5:681–690PubMedCrossRefGoogle Scholar
  21. Gilchrist GW, Huey RB, Serra L (2001) Rapid evolution of wing size clines in Drosophila subobscura. Genetica 112–113:273–286PubMedCrossRefGoogle Scholar
  22. Gupta JP (1970) Description of a new species of Phorticella zaprionus (Drosophilidae) from India. Proc Natl Acad Sci USA 36:62–70Google Scholar
  23. Hoffmann AA, Parsons PA (1997) Extreme environmental change and evolution. Cambridge University Press, CambridgeGoogle Scholar
  24. Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204PubMedCentralPubMedGoogle Scholar
  25. Karan D, Moreteau B, David JR (1999) Growth temperature and reaction norms of morphometrical traits in a tropical drosophilid: Zaprionus indianus. Heredity 83:398–407PubMedCrossRefGoogle Scholar
  26. Loeschcke V, Bundgaard J, Barker JSF (1999) Reaction norms across and genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D. Buzzatii. J Evol Biol 12:605–623CrossRefGoogle Scholar
  27. Loh R, David JR, Debat V, Bitner-Mathe BC (2008) Adaptation to different climates results in divergent phenotypic plasticity of wing size and shape in an invasive drosophilid. J Genet 87:209–217PubMedCrossRefGoogle Scholar
  28. Moreto B, Imasheva AG, Moren Zh, David ZhR (1998) Wing shape and developmental temperature in two Drosophila sibling species: different wing regions exhibit different norms of reaction. Genetika 34:248–258PubMedGoogle Scholar
  29. Morin JP, Moreteau B, Petavy G, David JR (1999) Divergence of reaction norms of size characters between tropical and temperate populations of Drosophila melanogaster and D. simulans. J Evol Biol 12:329–339CrossRefGoogle Scholar
  30. Pétavy G, Morin JP, Moreteau B, David JR (1997) Growth temperature and phenotypic plasticity in two Drosophila sibling species: probable adaptive changes in flight capacities. J Evol Biol 10:875–887Google Scholar
  31. Pétavy G, David JR, Gibert P, Moreteau B (2001) Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes. J Therm Biol 26:29–39PubMedCrossRefGoogle Scholar
  32. Pigliucci M, Preston K (2004) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, OxfordGoogle Scholar
  33. Pitchers W, Pool JE, Dworkin I (2013) Altitudinal clinal variation in wing size and shape in African Drosophila melanogaster: one cline or many? Evolution 67:438–452PubMedCentralPubMedCrossRefGoogle Scholar
  34. Rocha F, Medeiros HF, Klaczko LB (2008) The reaction norm for abdominal pigmentation and its curve in Drosophila mediopunctata depend on the mean phenotypic value. Evolution 63–1:280–287Google Scholar
  35. San Martin G, Bacquet P, Nieberding CM (2011) Mate choice and sexual selection in a model butterfly species, Bicyclus anynana: state of the art. Proc Neth Entomol Soc Meet 22:9–22Google Scholar
  36. Shelomi M (2012) Where are we now? Bergmann’s rule sensu lato in insects. Am Nat 180:511–519PubMedCrossRefGoogle Scholar
  37. Sisodia S, Singh BN (2009) Variations in morphological and life-history traits under extreme temperatures in Drosophila ananassae. J Biosci 34:263–274PubMedCrossRefGoogle Scholar
  38. Stalker HD (1980) Chromosome studies in wild populations of Drosophila melanogaster: II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics 95:211–233PubMedCentralPubMedGoogle Scholar
  39. Tsacas L (1985) Zaprionus indianus Gupta, 1970 nouveau nom pour le plus commun des Zaprionus africains (Diptera, Drosophilidae). Ann Soc Entomol Fr 21:343–344Google Scholar
  40. Vilela CR (1999) Is Zaprionus indianus Gupta, 1970 (Diptera, Drosophilidae) currently colonizing the Neotropical region? Drosoph Inf Serv 82:37–39Google Scholar
  41. Walt H, Tobler H (1978) Fine structural analysis of the thoracic longitudinal stripes of Zaprionus vittiger (Diptera). J Morphol 155:173–179CrossRefGoogle Scholar
  42. Whitman D (2009) Phenotypic plasticity of insects: mechanisms and consequences. Science Publishers, EnfieldCrossRefGoogle Scholar
  43. Wittkopp PJ, Carroll SB, Kopp A (2003) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19:495–504PubMedCrossRefGoogle Scholar
  44. Yadav JP, Singh BN (2005) Evolutionary genetics of Drosophila ananassae III. Effect of temperature on certain fitness traits in two natural populations. J Therm Biol 30:457–466CrossRefGoogle Scholar
  45. Yassin A (2013) Phylogenetic classification of the Drosophilidae Rondani (Diptera): the role of morphology in the postgenomic era. Syst Entomol 38:349–364CrossRefGoogle Scholar
  46. Yassin A, David JR (2010) Revision of the Afrotropical species of Zaprionus (Diptera, Drosophilidae), with descriptions of two new species and notes on the internal reproductive structures and immature stages. Zookeys 51:33–72PubMedCrossRefGoogle Scholar
  47. Yassin A, Capy P, Madi-Ravazzi L, Ogereau D, David JR (2008) DNA barcode discovers two cryptic species and two geographical radiations in the invasive drosophilid Zaprionus indianus. Mol Ecol Resour 8:491–501PubMedCrossRefGoogle Scholar
  48. Yassin A, Da Lage JL, David JR, Kondo M, Madi-Ravazzi L, Prigent SR, Toda MJ (2010) Polyphyly of the Zaprionus genus group (Diptera: Drosophilidae). Mol Phylogenet Evol 55:335–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Blanche Christine Bitner-Mathé
    • 1
  • Jean Robert David
    • 2
    • 3
    • 4
  1. 1.Departamento de Genética, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratoire Evolution, Génomes et Speciation (LEGS)CNRSGif sur YvetteFrance
  3. 3.University Paris Sud 11OrsayFrance
  4. 4.Département Systématique et Evolution, UMR 5202 (OSEB)Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations