Skip to main content

Advertisement

Log in

Population structure and effective/census population size ratio in threatened three-spined stickleback populations from an isolated river basin in northwest Spain

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Variability at 20 microsatellite loci was examined to assess the population genetic structure, gene flow, and effective population size (N e) in three populations of three-spined stickleback (Gasterosteus aculeatus) from the upper basin of the Miño River in Galicia, NW Spain, where this species is threatened. The three populations showed similar levels of genetic diversity. There is a significant genetic differentiation between the three populations, but also significant gene flow. N e estimates based on linkage disequilibrium yielded values of 355 for the Miño River population and 241 and 311 for the Rato and Guisande Rivers, respectively, although we expect that these are overestimates. N e estimates based on temporal methods, considering gene flow or not, for the tributaries yielded values of 30–56 and 47–56 for the Rato and Guisande Rivers, respectively. Estimated census size (N c ) for the Rato River was 880 individuals. This yielded a N e/N c estimate of 3–6 % for temporal estimation of Ne, which is within the empirical range observed in freshwater fishes. We suggest that the three populations analyzed have a sufficient level of genetic diversity with some genetic structure. Additionally, the absence of physical barriers suggests that conservation efforts and monitoring should focus in the whole basin as a unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden

    Google Scholar 

  • Allendorf FW, Ryman N (2002) The role of genetics in population viability analysis. In: Beissinger SR, McCullough DR (eds) Population viability analysis. University of Chicago Press, Chicago, pp 50–85

    Google Scholar 

  • Antao T, Pérez-Figueroa A, Luikart G (2011) Early detection of population declines: high power of genetic monitoring using effective population size estimators. Evol Appl 4:144–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Araguas RM, Vidal O, Pla C, Sanz N (2012) High genetic diversity of the endangered Iberian three-spined stickleback (Gasterosteus aculeatus) at the Mediterranean edge of its range. Freshw Biol 57:143–154

    Article  Google Scholar 

  • Bell MA, Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford

    Google Scholar 

  • Caballero A (1994) Developments in the prediction of effective population size. Heredity 73:657–879

    Article  PubMed  Google Scholar 

  • Cano JM, Matsuba C, Mäkinen H, Merilä J (2006) The utility of QTL-linked markers to detect selective sweeps in natural populations—a case study of the EDA gene and a linked marker in threespine stickleback. Mol Ecol 15:4613–4621

    Article  CAS  PubMed  Google Scholar 

  • Cano JM, Mäkinen HS, Leinonen T et al (2008) Extreme neutral genetic and morphological divergence supports classification of Adriatic three-spined stickleback (Gasterosteus aculeatus) populations as distinct conservation units. Biol Conserv 141:1055–1066

    Article  Google Scholar 

  • Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205

    Article  CAS  PubMed  Google Scholar 

  • Clavero M, Pou-Rovira Q, Zamora L (2009) Biology and habitat use of three-spined stickleback (Gasterosteus aculeatus) in intermittent Mediterranean streams. Ecol Freshw Fish 18:550–559

    Article  Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928–1933

    Article  CAS  PubMed  Google Scholar 

  • Crivelli AJ, Britton RH (1987) Life history adaptations of Gasterosteus aculeatus in a Mediterranean wetland. Env Biol Fish 18:109–125

    Article  Google Scholar 

  • Defaveri J, Merilä J (2013) Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J Evol Biol 26:1700–1715

    Article  CAS  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Doadrio I (2002) Atlas y libro rojo de los peces continentales de España. Dirección General de Conservación de la Naturaleza: Museo Nacional de Ciencias Naturales, Madrid

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fernández C, Hermida M, Amaro R, San Miguel E (2000) Lateral plate variation in Galician stickleback populations in the rivers Miño and Limia, NW Spain. Behaviour 137:965–979

    Article  Google Scholar 

  • FishBase (2013) Reviewed native distribution map for Gasterosteus aculeatus aculeatus (Three-spined stickleback). http://www.aquamaps.org, version of Aug. 2013. Accessed 4 Dec 2013

  • Foster SA, Baker JA, Bell MA (2003) The case for conserving threespine stickleback populations. Fisheries 28:10–18

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63

  • Giller PS (2005) River restoration: seeking ecological standards. Editor’s introduction. J Appl Ecol 42:201–207

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Heckel G, Zbinden M, Mazzi D, Kohler A, Reckeweg G, Bakker TCM, Largiadèr CR (2002) Microsatellite markers for the three-spined stickleback (Gasterosteus aculeatus L.) and their applicability in a freshwater and an anadromous population. Conserv Genet 3:77–79

    Article  Google Scholar 

  • Hendry AP, Taylor EB, McPhail JD (2002) Adaptive divergence and the balance between selection and gene flow: lake and stream stickleback in the Misty system. Evolution 56:1199–1216

    Article  PubMed  Google Scholar 

  • IUCN (2013) IUCN Red List of Threatened Species. Version 2013.1. http://www.iucnredlist.org. Accessed 04 Dec 2013

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Jorde P, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177:927–935

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Conserv Biol 16:129–136

    Article  Google Scholar 

  • Largiader CR, Fries V, Kobler B, Bakker TCM (1999) Isolation and characterization of microsatellite loci from the three-spined stickleback (Gasterosteus aculeatus L.). Mol Ecol 8:342–344

  • Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19:1803–1812

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Ryman N, Tallmon D, Schwartz M, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe-evidence for multiple glacial refugia. Mol Phylogenet Evol 46:167–182

    Article  PubMed  Google Scholar 

  • Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol Ecol 15:1519–1534

    Article  PubMed  Google Scholar 

  • Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moran PAP (1951) A mathematical theory of animal trapping. Biometrika 38:307–311

    Article  Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8:175–184

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, et al (2013) vegan: community ecology package. R package version 2.0–9. http://CRAN.R-project.org/package=vegan

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365

    Article  PubMed Central  PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Peichel CL, Nereng KS, Ohgi KA, Cole BL, Colosimo PF, Buerkle CA et al (2001) The genetic architecture of divergence between threespine stickleback species. Nature 414:901–905

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raeymaekers JAM, Maes GE, Geldof S, Hontis I, Nackaerts K, Volckaert FAM (2008) Modeling genetic connectivity in sticklebacks as a guideline for river restoration. Evol Appl 1:475–488

    Article  PubMed Central  PubMed  Google Scholar 

  • Rioux Paquette S (2012) PopGenKit: useful functions for (batch) file conversion and data resampling in microsatellite datasets. R package version 1.0. http://CRAN.R-project.org/package=PopGenKit

  • Rundle HD, Nagel L, Boughman JW, Schluter D (2000) Natural selection and parallel speciation in sympatric sticklebacks. Science 287:306–308

    Article  CAS  PubMed  Google Scholar 

  • Salgueiro P, Carvalho G, Collares-Pereira MJ, Coelho MM (2003) Microsatellite analysis of genetic population structure of the endangered cyprinid Anaecypris hispanica in Portugal: implications for conservation. Biol Conserv 109:47–56

    Article  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol 8:299–301

    Article  Google Scholar 

  • Von Hippel F (2008) Conservation of threespine and ninespine stickleback radiations in the Cook Inlet Basin, Alaska. Behaviour 145:693–724

    Article  Google Scholar 

  • Wang J (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Santure A (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181:1579–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waples RS (2002) Effective size of fluctuating salmon populations. Genetics 161:783–791

    PubMed Central  PubMed  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Waples RS, England PR (2011) Estimating contemporary effective population size based on linkage disequilibrium in the face of migration. Genetics 189:633–644

    Article  PubMed Central  PubMed  Google Scholar 

  • Wootton RJ, Adams CE, Attrill MJ (2005) Empirical modeling of the population dynamics of a small population of the threespine stickleback, Gasterosteus aculeatus. Env Biol Fish 74:151–161

    Article  Google Scholar 

  • Xunta de Galicia (2007) DECRETO 88/2007, do 19 de abril, polo que se regula o Catálogo galego de especies ameazadas. Diario Oficial de Galicia 89:7409

    Google Scholar 

  • Zippin C (1956) An evaluation of the removal method of estimating animal populations. Biometrics 12:163–189

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Galindo and four anonymous reviewers for helpful discussions on a previous version of the manuscript. We also thank to all the forest guards, especially to Mr. Latas, that accompanied us in the sampling trips. This work was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA; RZ2012-00011-C02-01), Xunta de Galicia (GPC2013-011 and INCITE08ENA261066ES) and Fondos Feder: “Unha maneira de facer Europa.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. San Miguel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Figueroa, A., Fernández, C., Amaro, R. et al. Population structure and effective/census population size ratio in threatened three-spined stickleback populations from an isolated river basin in northwest Spain. Genetica 143, 403–411 (2015). https://doi.org/10.1007/s10709-015-9839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9839-0

Keywords

Navigation