Advertisement

Genetica

, Volume 143, Issue 1, pp 31–44 | Cite as

Evidences of local adaptation in quantitative traits in Prosopis alba (Leguminosae)

  • C. Bessega
  • C. Pometti
  • M. Ewens
  • B. O. Saidman
  • J. C. Vilardi
Article

Abstract

Signals of selection on quantitative traits can be detected by the comparison between the genetic differentiation of molecular (neutral) markers and quantitative traits, by multivariate extensions of the same model and by the observation of the additive covariance among relatives. We studied, by three different tests, signals of occurrence of selection in Prosopis alba populations over 15 quantitative traits: three economically important life history traits: height, basal diameter and biomass, 11 leaf morphology traits that may be related with heat-tolerance and physiological responses and spine length that is very important from silvicultural purposes. We analyzed 172 G1-generation trees growing in a common garden belonging to 32 open pollinated families from eight sampling sites in Argentina. The multivariate phenotypes differ significantly among origins, and the highest differentiation corresponded to foliar traits. Molecular genetic markers (SSR) exhibited significant differentiation and allowed us to provide convincing evidence that natural selection is responsible for the patterns of morphological differentiation. The heterogeneous selection over phenotypic traits observed suggested different optima in each population and has important implications for gene resource management. The results suggest that the adaptive significance of traits should be considered together with population provenance in breeding program as a crucial point prior to any selecting program, especially in Prosopis where the first steps are under development.

Keywords

Adaptation Neutrality test Selection Progeny trials Quantitative genetics 

Notes

Acknowledgments

This research was supported by funding from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP 11220090100147, Universidad de Buenos Aires (UBACYT 20020130100043BA) and Agencia Nacional de Promoción Científica y Tecnológica (PICTO-OTNA 2011-0081) granted to JCV and BOS.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Adamoli JR, Ginzburg, Torrella S (2011) Escenarios productivos y ambientales del Chaco Argentino: 1977–2010 http://agrolinux.agrositio.com/producir_conservando/documentos/escenarios_productivos_ambientales_chaco.pdf
  2. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. 1(1):95–111. doi: 10.1111/j.1752-4571.2007.00013.x1
  3. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-4. http://CRAN.R-project.org/package=lme4
  4. Beaumont MA (2008) Selection and sticklebacks. Mol Ecol 17:3425–3427PubMedCrossRefGoogle Scholar
  5. Bessega C, Ferreyra L, Julio N, Montoya S, Saidman BO, Vilardi JC (2000) Mating system parameters in species of genus Prosopis (Leguminosae). Hereditas 132(1):19–27PubMedCrossRefGoogle Scholar
  6. Bessega C, Saidman BO, Darquier MR, Ewens M, Sánchez L, Rozenberg P, Vilardi JC (2009) Consistency between marker and genealogy-based heritability estimates in an experimental stand of Prosopis alba (Leguminosae). Am J Bot 96:458–465PubMedCrossRefGoogle Scholar
  7. Bessega C, Pometti CL, Ewens M, Saidman BO, Vilardi JC (2011) Strategies for conservation for disturbed Prosopis alba (Leguminosae, Mimosoidae) forests based on mating system and pollen dispersal parameters. Tree Genet Genome. doi: 10.1007/s11295-011-0439-6 Google Scholar
  8. Box GEP, Cox DR (1964) An analysis of transformations (with discussion). J R Stat Soc Ser B 26:211–252Google Scholar
  9. Burghardt AD, Espert SM, Braun-Wilke SH (2004) Variabilidad genética en Prosopis ferox (Mimosaceae). Darwiniana 42(1–4):31–36Google Scholar
  10. Chapuis E, Martin G, Goudet J (2008) Effects of selection and drift on G matrix evolution in a heterogeneous environment: a multivariate Qst–Fst test with the freshwater snail Galba truncatula. Genetics 180:2151–2161PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chenoweth SF, Blows MW (2008) QST meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits. Evolution 62:1437–1449PubMedCrossRefGoogle Scholar
  12. Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NCH, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Vol. 43: 3–15, 2010 doi:  10.3354/cr00879
  13. Cony MA (1993) Programa de consetvación y mejoramiento de especies de1 genera Prosopis en la Provincia Fitogeografica del Monte, Argentina. In: Contibuciones Mendocinas a la Quinta Reunion Regional para America Latina y el Caribe, de la Red de Forestaci0n de1 CIID. Unidades de Botanica y Fisiologia Vegetal, IADIZA, pp 37–72 Google Scholar
  14. Cony MA (1996) Genetic variability in Prosopis flexuosa DC, a native tree of the Monte phytogeographic province, Argentina. For Ecol Manag 87:41–49CrossRefGoogle Scholar
  15. Das N (2014) Modeling develops to estimate leaf area and leaf biomass of Lagerstroemia speciosa in west Vanugach Reserve Forest in Bangladesh. ISRN For. doi: 10.1155/2014/486478 Google Scholar
  16. Delvalle P, Antanasio M, Ayala M, Svirz I, Petkoff J (2003) Ensayos de orígenes de Prosopis alba grises (algarrobo blanco). Revista Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Colonia Benítez “Augusto G. SCHULZ”: 1–8Google Scholar
  17. Dunlap JM, Heilman PE, Stetter RF (1995) Genetic variation and productivity of Populus trichocarpa Torr & Gray and its hybrids. VIII: Leaf and crown morphology of native black cottonwood clones from four rivers valleys in Washington. Can J For Res 25:1710–1724CrossRefGoogle Scholar
  18. Fang JY, Chung JD, Chiang YCH, Chang CHT, Hwang SH-Y (2013) Divergent selection and local adaptation in disjunct populations of endangered conifer, Keteleeria davidiana var. formosoana (Pinaceae). PLoS ONE 8(7):e70162PubMedCentralPubMedCrossRefGoogle Scholar
  19. FAO (2007) Situación de los Bosques del Mundo, Roma, Italia. http://www.fao.org/docrep/009/a0773s/a0773s00.htm
  20. FAO (2013) Genetic improvement of Prosopis juliflora—Ashwani Kumar, Padmini Shivkumar, A.M. Rai and A.C. Banerjee. http://www.fao.org/docrep/006/ad321e/ad321e0b.htm
  21. Felker P (2009) Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In: De la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel, Book Compilation, Universidad Nacional Autónoma de México, Chap 9, pp 221–255Google Scholar
  22. Felker P, Smith D, Wiesman C, Bingham RL (1989) Biomass production of Prosopis alba clones at 2 nonirrigated field sites in semiarid south Texas. For Ecol Manag 29:135–150CrossRefGoogle Scholar
  23. Felker P, Lopez C, Soulier C, Ochoa J, Abdala R, Ewens M (2001) Genetic evaluation of Prosopis alba (algarrobo) in Argentina for cloning elite trees. Agrofor Syst 53:65–76CrossRefGoogle Scholar
  24. Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2004) First report on RAPDS patterns able to differentiate some Argentinean species of Section Algarobia (Prosopis, Leguminosae). Genetica 121(1):33–42PubMedCrossRefGoogle Scholar
  25. Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2007) Consistency of population genetics parameters estimated from isozyme and RAPDs dataset in species of genus Prosopis (Leguminosae, Mimosoideae). Genetica 131:217–230PubMedCrossRefGoogle Scholar
  26. Ferreyra LI, Vilardi JC, Tosto D, Julio N, Saidman BO (2010) Adaptive genetic diversity and population structure of the “algarrobo” [Prosopis chilensis (Molina) Stuntz] analysed by RAPD and isozyme markers. Eur J For Res 129:1011–1025. doi: 10.1007/s10342-010-0386-z CrossRefGoogle Scholar
  27. Gauzere J, Oddou-Muratorio S, Pichot C, Lefevre F, Klein E (2013) Biases in quantitative genetic analysis using open-pollinated progeny tests from natural tree populations. Acta Botanica Gallica Bot Lett. doi: 10.1080/12538078.2013.8222827 Google Scholar
  28. Genisse J, Palacios RA, Hoc PS, Carrizo R, Moffat L, Mom MP, Agullo MA, Picca P (1990) Observaciones sobre la biología floral de Prosopis (Leguminosae, Mimosoidae). I1 Fases florales y visitantes en el distrito Chaquefio Serrano. Danviniana 30:71–85Google Scholar
  29. Godoy O, Gianoli E (2013) Functional variation of leaf succulence in a cold rainforest epiphyte. Plant Ecol Evol 146(1):167–172. doi: 10.5091/plecevo.2013.800 CrossRefGoogle Scholar
  30. Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F statistics. Mol Ecol Notes 5:184–186. http://909.www.unil.ch/popgen/softwares/hierfstat.htm
  31. Grieser J, Gommes R, Bernardi M. (2014) New LocClim: the local climate estimator of FAO. Geophysical Research Abstracts, Vol. 8, 08305, 2006. ftp://ext-ftp.fao.org/SD/SDR/Agromet/New_LocClim/. Accessed 10 June 2014
  32. Hafez ESE (1962) The behavior of domestic animals. Williams and Wilkins, BaltimoreGoogle Scholar
  33. Holsinger KE (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci 97(13):7037–7042. doi: 10.1073/pnas.97.13.7037
  34. Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266CrossRefGoogle Scholar
  35. Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8(9):1010–1020CrossRefGoogle Scholar
  36. Karhunen M (2013) RAFM: Admixture F-model. R package version 1.1. http://CRAN.R-project.org/package=RAFM
  37. Karhunen M, Merilä J, Leinonen T, Cano JM, Ovaskainen O (2013a) DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits. Mol Ecol Resour 13:746–754PubMedCrossRefGoogle Scholar
  38. Karhunen M, Ovaskainen O, Herczeg G, Merilä J (2013b) Bringing habitat information into statistical tests of local adaptation in quantitative traits: a case study of nine-spined sticklebacks. Evolution 68:559–568PubMedCrossRefGoogle Scholar
  39. Keys RN (1993) Mating systems and pollination biology of velvet mesquite (Prosopis velutina Wooten). Thesis dissertation. University of ArizonaGoogle Scholar
  40. Keys RN, Smith S (1994) Mating system parameters and population genetic structure in pioneer populations of Prosopis velutina (Leguminosae). Am J Bot 81:1013–1020CrossRefGoogle Scholar
  41. Latta RG (2004) Gene flow, adaptive population divergence and comparative population structure across loci. New Phytol 161:51–58CrossRefGoogle Scholar
  42. Leimu R, Fisher M (2008) A meta-analysis of local adaptation in Plants. PLos One. doi: 10.1371/journal.pone.0004010
  43. Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17PubMedGoogle Scholar
  44. Lopez C, Maldonado A, Salim V (2001) Variación genética de Progenies de Prosopis alba. Investigación Agraria. Sistemas y Recursos Forestales 10(1):59–68Google Scholar
  45. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  46. Marchelli P, Smouse PE, Gallo L (2012) Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.). Tree Genet Genomes 8:1123–1134. doi: 10.1007/s11295-012-0500-0 CrossRefGoogle Scholar
  47. Mares MA, Enders FA, Kingsolver JM, Neff JL, Simpson BB (1977) Prosopis as a niche component. In: Simpson BB (ed) Mesquite: its biology in two desert ecosystems, US/IBP synthesis Series, Dowden Hutchinson & Ross Inc, Stroudsburg Penn, pp 123–149Google Scholar
  48. Martin G, Chapuis E, Goudet J (2008) Multivariate Q STF ST comparisons: a neutrality test for the evolution of the G matrix in structured populations. Genetics 180:2135–2149PubMedCentralPubMedCrossRefGoogle Scholar
  49. Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903CrossRefGoogle Scholar
  50. Morello J, Crudelli N, Saraceno M (1971) Los vinalares de Formosa, República Argentina. Serie FitogeográficaGoogle Scholar
  51. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Tree 9:373–375PubMedGoogle Scholar
  52. Mottuora MC, Finkeldey R, Verga AR, Gailing O (2005) Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-species amplification. Mol Ecol Notes 5:487–489CrossRefGoogle Scholar
  53. Nichols KM, Neale DB (2010) Association genetics, population genomics, and conservation: revealing the genes underlying adaptation in natural populations of plants and animals. In: DeWoody AJ, Bickham JW, Michler CH, Nichols KM, Rhodes GE, Woeste KE (eds) Molecular approaches in natural resource conservation and management. Cambridge University Press, New York, pp 123–168CrossRefGoogle Scholar
  54. O’Hanlon PC, Peakall R, Briese DT (2000) A review of new PCR-based genetic markers and their utility to weed ecology. Weed Res 40:239–254CrossRefGoogle Scholar
  55. O’Hara RB, Merilä J (2005) Bias and precision in QST estimates: problems and some solutions. Genetics 171:1331–1339PubMedCentralPubMedCrossRefGoogle Scholar
  56. Ovaskainen O, Karhunen M, Zheng CH, Cano Arias JM, Merilä J (2011) A new method to uncover signatures of divergent and stabilizing selection in quantitative traits. Genetics 189:621–632PubMedCentralPubMedCrossRefGoogle Scholar
  57. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214CrossRefGoogle Scholar
  58. Pressoir G, Berthaud J (2004) Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity 92:95–101PubMedCrossRefGoogle Scholar
  59. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  60. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-anlysis. Evolution 55:1095–1103PubMedCrossRefGoogle Scholar
  61. Reynolds HG (1954) Some interrelations of the Merriam kangaroo rat to velvet mesquite. J Range Manag 7:176–180CrossRefGoogle Scholar
  62. Roig FA (1993) Aportes a la Etnobotánica del Genero Prosopis. In: Contribuciones Mendocinas a la quinta Reuni6n Regional para América Latina y el Caribe de la Red de Forestación del CIID. Unidades de Botánica y Fisiología vegetal IADIZA, pp 99–121Google Scholar
  63. Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14(11):807–820. doi: 10.1038/nrg3522 PubMedCrossRefGoogle Scholar
  64. Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774CrossRefGoogle Scholar
  65. Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2004) Dirección de Bosques. Unidad de Manejo del Sistema de Evaluación Forestal, Informe sobre deforestación en ArgentinaGoogle Scholar
  66. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes 9:901–911CrossRefGoogle Scholar
  67. Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374PubMedCentralPubMedGoogle Scholar
  68. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. ISBN 0-387-95457-0CrossRefGoogle Scholar
  69. Verdes P (2007) Micropropagación de Prosopis caldenia BURK.: estado actual y perspectivas. Revista Científica Agropecuaria 11:45–51Google Scholar
  70. Verga A (2000) Recursos genéticos, mejoramiento y conservación de especies del género Prosopis. In: Norverto Carlos A (ed) mejores árboles para más forestadores. Secretaría de Agricultura, Ganaderí a, Pesca y Alimentos (SAGPyA), Buenos Aires, Argentina, pp 205–221Google Scholar
  71. Verga A (2009a) Domesticación de especies forestales nativas del Parque Chaqueño (Algarrobo). http://inta.gob.ar/proyectos/pnfor-044341
  72. Verga A, López Lauenstein D, López C, Navall M, Joseau J, Gómez C, Royo O, Degano W, Marcó M (2009b) Caracterización morfológica de los algarrobos (Prosopis sp.) en las regiones fitogeográficas Chaqueña y Espinal norte de Argentina. Quebracho 17(1,2):31–40Google Scholar
  73. Verga A, López C, Naval M, Joseau J, Gómez C, Royo O, Degano W, Marcó M (2014) Caracterización morfológica, distribución geográfica y estimación de nichos ecológicos de algarrobos (Prosopis sp.) en las regiones fitogeográficas Chaqueña y Espinal norte de Argentina. http://redaf.org.ar/wp-content/uploads/2008/02/Distribucion-geografica-Prosopis.pdf. Accessed 16 June 2014
  74. Wade MJ (2000) Epistasis as a genetic constraint within populations and an accelerant of adaptive divergence among them. In: Wolf JB, Brodie ED, Wade MJ (eds) Epistasis of the evolutionary process. Oxford University Press, Oxford, pp 213–231Google Scholar
  75. Walter K (2011) Prosopis, an Alien among the sacred trees of South India. Thesis, University of Helsinki, p 204. ISSN 978-952-10-4556-1Google Scholar
  76. Whitlock MC (2008) Evolutionary inference from Q ST. Mol Ecol 17:1885–1896PubMedCrossRefGoogle Scholar
  77. Wu R, Bradshaw HD Jr, Stettler RF (1997) Molecular genetics of growth and development in Populus (Salicaceae). V. Mapping quantitative trait loci affecting leaf venation. Am J Bot 84(2):143–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • C. Bessega
    • 1
  • C. Pometti
    • 1
  • M. Ewens
    • 2
  • B. O. Saidman
    • 1
  • J. C. Vilardi
    • 1
  1. 1.Laboratorio de Genética, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto IEGEBA (CONICET-UBA)Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Estación Experimental Fernández, Departamento de RoblesUniversidad Católica Santiago del Estero (UCSE)Santiago del EsteroArgentina

Personalised recommendations