Skip to main content
Log in

Reconstruction of two colonisation pathways of Mantis religiosa (Mantodea) in Germany using four mitochondrial markers

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Past and recent climatic changes induced shifts in species ranges. Mantis religiosa has also expanded its range across Germany within the past decades. To determine the ancestry of German M. religiosa we sequenced four mitochondrial genes (COI, COII, Cyt b, ND4) of European M. religiosa populations. We found an east, central and west European lineage of M. religiosa. These distinct lineages are consistent with genetic isolation by distance during glacial periods, and the re-colonization of northern parts of Europe by species from different refugia. Within Germany, we found haplotypes clustering to the central and west European lineage suggesting that M. religiosa immigrated from two directions into Germany. Mismatch distributions, and negative Tajima’s D and Fu’s Fs values indicate a current range expansion of the central and west European lineage. We hypothesise that ongoing global warming which increases the availability of thermally favourable areas in Germany for M. religiosa adds to its current range expansion. In conclusion, M. religiosa colonized Germany via two directions: west German populations descended from French populations and east German populations from Czech populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1979) A bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66:237–242

    Article  Google Scholar 

  • Aspöck H (2008) Postglacial formation and fluctuations of the biodiversity of Central Europe in the light of climate change. Parasitol Res 103:7–10

    Article  Google Scholar 

  • Badeck F, Pompe S, Kühn I, Glauer A (2008) Wetterextreme und Artenvielfalt. Zeitlich hochauflösende Klimainformationen auf dem Messtischblattraster und für Schutzgebiete in Deutschland. Naturschutz und Landschaftsplanung 40:343–345

    Google Scholar 

  • Ballard JWO, Kreitman M (1995) Is mitochondrial DNA a strictly neutral marker? Trends Ecol Evol 10:485–488

    Article  CAS  PubMed  Google Scholar 

  • Barr NB (2009) Pathway analysis of Ceratitis captitata (Diptera: Tephritidae) using mitochondrial DNA. J Econ Entomol 102:401–411

    Article  CAS  PubMed  Google Scholar 

  • Berg MK, Schwarz CJ, Mehl JE (2011) Die Gottesanbeterin. Westarp Wissenschaften, Hohenwarsleben

    Google Scholar 

  • Brechtel F (1996) Neozoen: neue Insektenarten in unserer Natur? In: Kinzelbach R, Schmidt-Fischer S (eds) Gebhardt H. Gebietsfremde Tierarten. ecomed, Landsberg, pp 127–154

    Google Scholar 

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397

    Article  Google Scholar 

  • Bylebyl K, Poschlod P, Reisch C (2008) Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe. Mol Ecol 17:3379–3388

    Article  PubMed  Google Scholar 

  • Cooper SJB, Ibrahim KM, Hewitt GM (1995) Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol Ecol 4:49–60

    Article  CAS  PubMed  Google Scholar 

  • Detzel P (1995) Herkunft und Verbreitung der Heuschrecken in Baden-Württemberg. Articulata 10:107–118

    Google Scholar 

  • Detzel P, Ehrmann R (1998) Mantis religiosa. In: Detzel P (ed) Die Heuschrecken Baden-Württembergs. Ulmer, Stuttgart (Hohenheim), pp 181–187

    Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Ehrmann R (1985) Standorttreue von Mantis religiosa (L.). Articulata 2:179–180

    Google Scholar 

  • Ehrmann R (2003) Die Gottesanbeterin (Mantis religiosa), Neufunde in Deutschland. Articulata 18:253–254

    Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fu Y (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu Y, Li W (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammouti N, Schmitt T, Seitz A, Kosuch J, Veith M (2010) Combining mitochondrial and nuclear evidences: a refined evolutionary history of Erebia medusa (Lepidoptera: Nymphalidae: Satyrinae) in Central Europe based on the COI gene. J Zool Syst Evol Res 48:115–125

    Article  Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Harz K (1957) Die Gottesanbeterin. Natur und Volk 87:187–193

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distribution of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455

    Article  Google Scholar 

  • Hideg JI (1994) The territorial behaviour of the Mantis religiosa and its migration propensity. Bull inf Soc Lepid Rom 5:291–296

    Google Scholar 

  • Hideg JI (1996) Imbalances between the sexes in Mantis religiosa populations. Entomol Romanica 1:77–82

    Google Scholar 

  • Li T, Zhang M, Qu Y, Ren Z, Zhang J, Guo Y et al (2011) Population genetic structure and phylogeographical pattern of rice grasshopper, Oxya hyla intricata, across Southeast Asia. Genetica 139:511–524

    Article  PubMed  Google Scholar 

  • Liana A (2007) Distribution of Mantis religiosa (L.) and its changes in Poland. Fragmenta Faunistica 50:91–125

    Article  Google Scholar 

  • Lunt DH, Ibrahim KM, Hewitt GM (1998) mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus. Heredity 80:633–641

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pulliam RH (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Reis DM, Cunha RL, Patrao C, Rebelo R, Castilho R (2011) Salamandra salamandra (Amphibia: Caudata: Salamandridae) in Portugal: not all black and yellow. Genetica 139:1095–1105

    Article  PubMed  Google Scholar 

  • Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142

    Article  PubMed  Google Scholar 

  • Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds AJ (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Salt RW, James HG (1947) Low temperature as a factor in the mortality of eggs of Mantis religiosa L. Can Entomol 79:33–36

    Article  Google Scholar 

  • Scataglini MA, Lanteri AA, Confalonieri VA (2006) Diversity of boll weevil populations in South America: a phylogeographic approach. Genetica 126:353–368

    Article  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A, Cosson J (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima F (1996) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143:1457–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zitari-Chatti R, Chatti N, Fulgione D, Caiazza I, Aprea G, Elouaer A et al (2009) Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 136:439–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Roberto Battiston, Manfred Berg, Enrico Busato, Claudine Decourchelle, Denis Loupy, Reinhard Ehrmann, Sönke Hardersen, Manfred Keller, Ingmar Landeck, Nora Lieskonig and Harald Krenn, Thomas Michaelis, Luca Picciau, Gerhard Pohl, Susanne Randolf, Ralf Rasch, Kai Schütte, and Christopher Tuchscherer for collecting and/or providing samples of M. religiosa. We also thank Christiane Groß for DNA preparation and Jes Johannesen for precious advice in data evaluation. We are especially grateful to Petr Janšta for providing genetic data from his phylogeographic database on M. religiosa. Additionally we thank Rebecca Nagel for linguistic improvement and the members of our working group, as well as the two anonymous reviewers for their valuable comments on an earlier version of this manuscript. This research was supported by a grant from the Deutsche Bundesstiftung Umwelt. This paper is part of the PhD thesis of Catherine Anne Linn.

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

This article does not contain any experiments with animals performed by any of the authors. For collecting M. religiosa tissue samples we got the permissions from the nature conservation authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Anne Linn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linn, C.A., Griebeler, E.M. Reconstruction of two colonisation pathways of Mantis religiosa (Mantodea) in Germany using four mitochondrial markers. Genetica 143, 11–20 (2015). https://doi.org/10.1007/s10709-014-9806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-014-9806-1

Keywords

Navigation