Advertisement

Genetica

, Volume 142, Issue 4, pp 337–350 | Cite as

One or three species in Megadenia (Brassicaceae): insight from molecular studies

  • E. V. Artyukova
  • M. M. Kozyrenko
  • E. V. Boltenkov
  • P. G. Gorovoy
Article

Abstract

Megadenia Maxim. is a small genus of the Brassicaceae endemic to East Asia with three disjunct areas of distribution: the eastern edge of the Qinghai–Tibetan Plateau, the Eastern Sayan Mountains in southern Siberia, and Chandalaz Ridge in the southern Sikhote-Alin Mountains. Although distinct species (M. pygmaea Maxim., M. bardunovii Popov, and M. speluncarum Vorob., Vorosch. and Gorovoj) have been described from each area, they have lately been reduced to synonymy with M. pygmaea due to high morphological similarity. Here, we present the first molecular study of Megadenia. Using the sequences of 11 noncoding regions from the cytoplasmic (chloroplast and mitochondrial) and nuclear genomes, we assessed divergence within the genus and explored the relationships between Megadenia and Biscutella L. Although M. bardunovii, M. speluncarum, and M. pygmaea were found to be indiscernible with regard to the nuclear and mitochondrial markers studied, our data on the plastid genome revealed their distinctness and a clear subdivision of the genus into three lineages matching the three described species. All of the phylogenetic analyses of the chloroplast DNA sequences provide strong support for the inclusion of Megadenia and Biscutella in the tribe Biscutelleae. A dating analysis shows that the genus Megadenia is of Miocene origin and diversification within the genus, which has led to the three extant lineages, most likely occurred during the Early–Middle Pleistocene, in agreement with the vicariance pattern. Given the present-day distribution, differences in habitat preferences and in some anatomical traits, and lack of a direct genealogical relationship, M. pygmaea, M. bardunovii, and M. speluncarum should be treated as distinct species or at least subspecies.

Keywords

Brassicaceae Biscutelleae Megadenia Molecular markers Phylogeny Coalescent analysis 

Notes

Acknowledgments

This work was supported by the programme of the Presidium of the Russian Academy of Sciences “Biological Diversity”, project Genetic Diversity of Natural Populations of Far East Flora (No. 12-I-P30-02). We are grateful to Drs. A.V. Verkhozina and S.G. Kazanovsky (SIPPB SB RAS, Irkutsk, Russia), I.V. Tatanov (Komarov Botanical Institute, St.-Petersburg, Russia), and R.V. Doudkin (FEFU, Vladivostok, Russia) for kindly providing Megadenia samples. The authors thank anonymous reviewers for their helpful comments on the manuscript.

References

  1. Abdelaziz M, Lorite J, Muñoz-Pajares AJ et al (2011) Using complementary techniques to distinguish cryptic species: a new Erysimum (Brassicaceae) species from North Africa. Am J Bot 98:1049–1060PubMedCrossRefGoogle Scholar
  2. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  3. Artyukova EV, Kozyrenko MM (2012) Phylogenetic relationships of Oxytropis chankaensis Jurtz. and Oxytropis oxyphylla (Pall.) DC. (Fabaceae) inferred from the data of sequencing of the ITS region of the nuclear ribosomal DNA operon and intergenic spacers of the chloroplast genome. Russ J Genet 48:163–169CrossRefGoogle Scholar
  4. Artyukova EV, Kholina AB, Kozyrenko MM, Zhuravlev YN (2004) Analysis of genetic variation in rare endemic species Oxytropis chankaensis Jurtz (Fabaceae) using RAPD markers. Russ J Genet 40:877–884Google Scholar
  5. Arzhannikova A, Arzhannikov S, Jolivet M et al (2011) Pliocene to Quaternary deformation in South East Sayan (Siberia): initiation of the Tertiary compressive phase in the southern termination of the Baikal Rift System. J Asian Earth Sci 40:581–594CrossRefGoogle Scholar
  6. Bailey CD, Koch MA, Mayer M et al (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160PubMedCrossRefGoogle Scholar
  7. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619PubMedCrossRefGoogle Scholar
  8. Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327PubMedCrossRefGoogle Scholar
  9. Beilstein MA, Nagalingum NS, Clements MD et al (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724–18728PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-visited. Am J Bot 97:1296–1303PubMedCrossRefGoogle Scholar
  11. Berkutenko AN (1998) On the genus Megadenia (Brassicaceae). Bot Zhurn (Leningrad) 83:69–72Google Scholar
  12. Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999PubMedCentralPubMedCrossRefGoogle Scholar
  13. Borchsenius F (2009) FastGap 1.2. Department of Biological Sciences, University of Aarhus, Denmark. http://www.aubot.dk/FastGap_home.htm
  14. Chen S, Xing Y, Su T, Zhou Z, Dilcher EDL, Soltis DE (2012) Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building. BMC Plant Biol 12:58PubMedCentralPubMedCrossRefGoogle Scholar
  15. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  16. Cohen KM, Finney S, Gibbard PL (2013) International chronostratigraphic chart. International Commission on Stratigraphy, January 2013. http://www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf
  17. Couvreur FA, Al-Shehbaz IA, Bakker FT et al (2010) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71PubMedCrossRefGoogle Scholar
  18. Davila JI, Arrieta-Montiel MP, Wamboldt Y et al (2011) Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol 9:64PubMedCentralPubMedCrossRefGoogle Scholar
  19. De Bruyn M, Rüber L, Nylinder S et al (2013) Paleo-drainage basin connectivity predicts evolutionary relationships across three southeast asian biodiversity hotspots. Syst Biol 62(3):398–410PubMedCrossRefGoogle Scholar
  20. Ding ZL, Derbyshire E, Yang SL et al (2005) Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth Planet Sci Lett 237:45–55CrossRefGoogle Scholar
  21. Dixon CJ, Schonswetter P, Vargas P et al (2009) Bayesian hypothesis testing supports long-distance Pleistocene migrations in a European high mountain plant (Androsace vitaliana, Primulaceae). Mol Phylogenet Evol 53:580–591PubMedCrossRefGoogle Scholar
  22. Dong W, Liu J, Yu J et al (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7(4):e35071PubMedCentralPubMedCrossRefGoogle Scholar
  23. Dorofeyev VI (2004) System of family Cruciferae B. Juss (Brassicaceae Burnett). Turczaninowia 7:43–52Google Scholar
  24. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentralPubMedCrossRefGoogle Scholar
  25. Duminil J, Pemonge M-H, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430CrossRefGoogle Scholar
  26. Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae. Taxon 58:425–437Google Scholar
  27. Franzke A, Lysak MA, Al-Shehbaz IA et al (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116PubMedCrossRefGoogle Scholar
  28. German DA, Al-Shehbaz IA (2008) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae, and Erysimeae) in the Brassicaceae (Cruciferae). Harvard Pap Bot 13:165–170CrossRefGoogle Scholar
  29. German DA, Friesen N, Neuffer B et al (2009) Contribution to ITS phylogeny of the Brassicaceae, with a special reference to some Asian taxa. Plant Syst Evol 283:33–56CrossRefGoogle Scholar
  30. Gorovoy PG, Boltenkov EV, Yakovleva OV, Doudkin RV (2011) Taxonomic value of petiole anatomy in the genus Megadenia Maxim. (Cruciferae). Dokl Biol Sci 439:215–217PubMedCrossRefGoogle Scholar
  31. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  32. Guo ZT, Peng SZ, Hao QZ et al (2004) Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global Planet Change 41:135–145CrossRefGoogle Scholar
  33. Ho SYW (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol 38:409–414CrossRefGoogle Scholar
  34. Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58(3):367–380PubMedCrossRefGoogle Scholar
  35. Huang SSF, Hwang S-Y, Lin T-P (2002) Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and East Asia. Mol Ecol 11:2349–2358PubMedCrossRefGoogle Scholar
  36. Huang CC, Hung KH, Wang WK et al (2012) Evolutionary rates of commonly used nuclear and organelle markers of Arabidopsis relatives (Brassicaceae). Gene 499:194–201PubMedCrossRefGoogle Scholar
  37. Jordon-Thaden I, Hase I, Al-Shehbaz I, Koch MA (2010) Molecular phylogeny and systematics of the genus Draba (Brassicaceae) and identification of its most closely related genera. Mol Phylogenet Evol 55:524–540PubMedCrossRefGoogle Scholar
  38. Karl R, Koch MA (2013) A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Ann Bot 112:983–1001PubMedCrossRefGoogle Scholar
  39. Khalilov II, Trifonova VI (1992) The comparative anatomical investigation of the petiole in representatives of the genus Crambe (Brassicaceae) in connection with its systematics and phylogeny. Bot Zhurn (Moscow and Leningrad) 77:33–44Google Scholar
  40. Kiefer C, Dobeš C, Sharbel TF, Koch MA (2009) Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera - A genus and continental-wide perspective. Mol Phylogenet Evol 52:303–311PubMedCrossRefGoogle Scholar
  41. Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142CrossRefGoogle Scholar
  42. Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:6272–6277PubMedCentralPubMedCrossRefGoogle Scholar
  43. Koch MA, Dobeš C, Kiefer C et al (2007) Supernetwork identifies multiple events of plastid trnF (GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73PubMedCrossRefGoogle Scholar
  44. Koch MA, Karl R, Kiefer C, Al-Shehbaz IA (2010) Colonizing the American continent: systematics of the genus Arabis in North America (Brassicaceae). Am J Bot 97(6):1040–1057PubMedCrossRefGoogle Scholar
  45. Kozyrenko MM, Artyukova EV, Zhuravlev YuN (2009) Independent species status of Iris vorobievii NS Pavlova, Iris mandshurica Maxim, and Iris humilis Georgi (Iridaceae): evidence from the nuclear and chloroplast genomes. Russ J Genet 45:1394–1402CrossRefGoogle Scholar
  46. Kuittinen H, Aguadé M (2000) Nucleotide variation at the chalcone isomerase locus in Arabidopsis thaliana. Genetics 155:863–872PubMedCentralPubMedGoogle Scholar
  47. Kuittinen H, Aguadé M, Charlesworth D et al (2002) Primers for 22 candidate genes for ecological adaptations in Brassicaceae. Mol Ecol Notes 2:258–262CrossRefGoogle Scholar
  48. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  49. Liu L, Zhao B, Tan D, Wang J (2011) Phylogenetic relationships of Brassicaceae in China: insights from a non-coding chloroplast, mitochondrial, and nuclear DNA data set. Biochem Syst Ecol 39:600–608CrossRefGoogle Scholar
  50. Lu L, Fritsch PW, Cruz BC et al (2010) Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae). Mol Phylogenet Evol 57:364–379PubMedCrossRefGoogle Scholar
  51. Magallon S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100(3):556–573PubMedCrossRefGoogle Scholar
  52. Makry TV, Kazanovsky SG (2002) New finds of Megadenia bardunovii M. Pop. in Tunkinskaya valley. In: Problems of Botany of South Siberia and Mongolia. Proceedings of the 1st International Scientific-Practical Conference (Barnaul, 26.–28.11.2002), Barnaul, pp 42–44Google Scholar
  53. Manchester SR, Chen Z-D, Lu A-M, Uemura K (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 47:1–42CrossRefGoogle Scholar
  54. Maximowicz CJ (1889) Flora Tangutica. Fasc 1. Typis Acad Imp, St. Petersburg, pp 76–77 Google Scholar
  55. Meredâ P Jr, Hodálová I, Mártonfi P et al (2008) Intraspecific variation in Viola suavis in Europe: parallel evolution of white-flowered morphotypes. Ann Bot 102:443–462PubMedCentralPubMedCrossRefGoogle Scholar
  56. Mishiba K-I, Yamano K, Nakatsuka T et al (2009) Genetic relationships in the genus Gentiana based on chloroplast DNA sequence data and nuclear DNA content. Breed Sci 59:119–127CrossRefGoogle Scholar
  57. Möller M, Cronk QCB (1997) Phylogeny and disjunct distribution: evolution of Saintpaulia (Gesneriaceae). Proc R Soc Lond B 264:1827–1836CrossRefGoogle Scholar
  58. Mummenhoff K, Polster A, Mühlhausen A, Theißen G (2009) Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exp Bot 60:1503–1513PubMedCrossRefGoogle Scholar
  59. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  60. Olowokudejo JD (1987) Taxonomic value of petiole anatomy in the genus Biscutella L. (Cruciferae). Bull Jard Bot Nat Belg 57:307–320CrossRefGoogle Scholar
  61. Parisod C, Besnard G (2007) Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755–2767PubMedCrossRefGoogle Scholar
  62. Popov M (1954) Genera dua pro flora URSS nova Angiospermarum—Mannagettaea H. Smith (Orobanchaceae) et Megadenia Max. (Cruciferae). Bot Mater Gerb Bot Inst Komarova Akad Nauk SSSR 16:3–15Google Scholar
  63. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  64. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45PubMedCrossRefGoogle Scholar
  65. Puşcaş M, Choler P, Tribsch A et al (2008) Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol Ecol 17:2417–2429PubMedCrossRefGoogle Scholar
  66. Qiu Y-X, Fu C-X, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogen Evol 59:225–244CrossRefGoogle Scholar
  67. Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166PubMedCrossRefGoogle Scholar
  68. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefGoogle Scholar
  69. Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347PubMedCentralPubMedCrossRefGoogle Scholar
  70. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  71. Slotte T, Ceplitis A, Neuffer B et al (2006) Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C barsa-pastoris based on chloroplast and nuclear DNA sequences. Am J Bot 93:1714–1724PubMedCrossRefGoogle Scholar
  72. Swofford DL (2003) PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4. Sinauer Associates, SunderlandGoogle Scholar
  73. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  74. Vorob’ev DP, Voroshilov VN, Gorovoi PG (1976) A new species Megadenia Maxim. (Brassicaceae) in the Far East. Biulleten’ Biull Gl Bot Sada (Moscow) 101:58–61Google Scholar
  75. Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258CrossRefGoogle Scholar
  76. Warwick SI, Mummenhoff K, Sauder CA et al (2010) Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst Evol 285:209–232CrossRefGoogle Scholar
  77. Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167–177PubMedCrossRefGoogle Scholar
  78. Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014) Evolutionary diversifications of plants on the Qinghai–Tibetan Plateau. Front Genet 5:4. doi: 10.3389/fgene.2014.00004 PubMedCentralPubMedGoogle Scholar
  79. Winkler M, Tribsch A, Paun O et al (2010) Pleistocene distribution range shifts were accompanied by breeding system divergence within Hornungia alpina (Brassicaceae) in the Alps. Mol Phylogenet Evol 54:571–582PubMedCrossRefGoogle Scholar
  80. Wu Y, Cui Z, Liu G et al (2001) Quaternary geomorphological evolution of the Kunlun Pass area and uplift of the Qinghai–Xizang (Tibet) Plateau. Geomorphology 36:203–216CrossRefGoogle Scholar
  81. Wu F, Fang X, Ma Y et al (2007) Plio-Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet Sci Lett 257:160–169CrossRefGoogle Scholar
  82. Yue JP, Sun H, Baum DA et al (2009) Molecular phylogeny of Solms-laubachia (Brassicaceae) sl, based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. J Syst Evol 47:402–415CrossRefGoogle Scholar
  83. Zhou T, Lu L, Yang G, Al-Shehbaz IA (2001) Brassicaceae (Cruciferae). In: Wu CY, Raven PH (eds) Flora of China, Science Press and Missouri Bot Gard Press, Beijing and St Louis, 8:1–193Google Scholar
  84. Zhou S, Wang X, Wang J, Xu L (2006) A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan Plateau. Quatern Int 154–155:44–51CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • E. V. Artyukova
    • 1
  • M. M. Kozyrenko
    • 1
  • E. V. Boltenkov
    • 2
  • P. G. Gorovoy
    • 3
  1. 1.Institute of Biology and Soil Science, Far East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Botanical Garden Institute, Far East BranchRussian Academy of SciencesVladivostokRussia
  3. 3.G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations