Skip to main content
Log in

One or three species in Megadenia (Brassicaceae): insight from molecular studies

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Megadenia Maxim. is a small genus of the Brassicaceae endemic to East Asia with three disjunct areas of distribution: the eastern edge of the Qinghai–Tibetan Plateau, the Eastern Sayan Mountains in southern Siberia, and Chandalaz Ridge in the southern Sikhote-Alin Mountains. Although distinct species (M. pygmaea Maxim., M. bardunovii Popov, and M. speluncarum Vorob., Vorosch. and Gorovoj) have been described from each area, they have lately been reduced to synonymy with M. pygmaea due to high morphological similarity. Here, we present the first molecular study of Megadenia. Using the sequences of 11 noncoding regions from the cytoplasmic (chloroplast and mitochondrial) and nuclear genomes, we assessed divergence within the genus and explored the relationships between Megadenia and Biscutella L. Although M. bardunovii, M. speluncarum, and M. pygmaea were found to be indiscernible with regard to the nuclear and mitochondrial markers studied, our data on the plastid genome revealed their distinctness and a clear subdivision of the genus into three lineages matching the three described species. All of the phylogenetic analyses of the chloroplast DNA sequences provide strong support for the inclusion of Megadenia and Biscutella in the tribe Biscutelleae. A dating analysis shows that the genus Megadenia is of Miocene origin and diversification within the genus, which has led to the three extant lineages, most likely occurred during the Early–Middle Pleistocene, in agreement with the vicariance pattern. Given the present-day distribution, differences in habitat preferences and in some anatomical traits, and lack of a direct genealogical relationship, M. pygmaea, M. bardunovii, and M. speluncarum should be treated as distinct species or at least subspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelaziz M, Lorite J, Muñoz-Pajares AJ et al (2011) Using complementary techniques to distinguish cryptic species: a new Erysimum (Brassicaceae) species from North Africa. Am J Bot 98:1049–1060

    Article  PubMed  Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  • Artyukova EV, Kozyrenko MM (2012) Phylogenetic relationships of Oxytropis chankaensis Jurtz. and Oxytropis oxyphylla (Pall.) DC. (Fabaceae) inferred from the data of sequencing of the ITS region of the nuclear ribosomal DNA operon and intergenic spacers of the chloroplast genome. Russ J Genet 48:163–169

    Article  CAS  Google Scholar 

  • Artyukova EV, Kholina AB, Kozyrenko MM, Zhuravlev YN (2004) Analysis of genetic variation in rare endemic species Oxytropis chankaensis Jurtz (Fabaceae) using RAPD markers. Russ J Genet 40:877–884

    Google Scholar 

  • Arzhannikova A, Arzhannikov S, Jolivet M et al (2011) Pliocene to Quaternary deformation in South East Sayan (Siberia): initiation of the Tertiary compressive phase in the southern termination of the Baikal Rift System. J Asian Earth Sci 40:581–594

    Article  Google Scholar 

  • Bailey CD, Koch MA, Mayer M et al (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    Article  CAS  PubMed  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619

    Article  CAS  PubMed  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327

    Article  CAS  PubMed  Google Scholar 

  • Beilstein MA, Nagalingum NS, Clements MD et al (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724–18728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-visited. Am J Bot 97:1296–1303

    Article  PubMed  Google Scholar 

  • Berkutenko AN (1998) On the genus Megadenia (Brassicaceae). Bot Zhurn (Leningrad) 83:69–72

  • Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borchsenius F (2009) FastGap 1.2. Department of Biological Sciences, University of Aarhus, Denmark. http://www.aubot.dk/FastGap_home.htm

  • Chen S, Xing Y, Su T, Zhou Z, Dilcher EDL, Soltis DE (2012) Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building. BMC Plant Biol 12:58

    Article  PubMed Central  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Cohen KM, Finney S, Gibbard PL (2013) International chronostratigraphic chart. International Commission on Stratigraphy, January 2013. http://www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf

  • Couvreur FA, Al-Shehbaz IA, Bakker FT et al (2010) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71

    Article  CAS  PubMed  Google Scholar 

  • Davila JI, Arrieta-Montiel MP, Wamboldt Y et al (2011) Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol 9:64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Bruyn M, Rüber L, Nylinder S et al (2013) Paleo-drainage basin connectivity predicts evolutionary relationships across three southeast asian biodiversity hotspots. Syst Biol 62(3):398–410

    Article  PubMed  Google Scholar 

  • Ding ZL, Derbyshire E, Yang SL et al (2005) Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth Planet Sci Lett 237:45–55

    Article  CAS  Google Scholar 

  • Dixon CJ, Schonswetter P, Vargas P et al (2009) Bayesian hypothesis testing supports long-distance Pleistocene migrations in a European high mountain plant (Androsace vitaliana, Primulaceae). Mol Phylogenet Evol 53:580–591

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Liu J, Yu J et al (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7(4):e35071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dorofeyev VI (2004) System of family Cruciferae B. Juss (Brassicaceae Burnett). Turczaninowia 7:43–52

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Duminil J, Pemonge M-H, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430

    Article  CAS  Google Scholar 

  • Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae. Taxon 58:425–437

    Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA et al (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    Article  CAS  PubMed  Google Scholar 

  • German DA, Al-Shehbaz IA (2008) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae, and Erysimeae) in the Brassicaceae (Cruciferae). Harvard Pap Bot 13:165–170

    Article  Google Scholar 

  • German DA, Friesen N, Neuffer B et al (2009) Contribution to ITS phylogeny of the Brassicaceae, with a special reference to some Asian taxa. Plant Syst Evol 283:33–56

    Article  Google Scholar 

  • Gorovoy PG, Boltenkov EV, Yakovleva OV, Doudkin RV (2011) Taxonomic value of petiole anatomy in the genus Megadenia Maxim. (Cruciferae). Dokl Biol Sci 439:215–217

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Guo ZT, Peng SZ, Hao QZ et al (2004) Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global Planet Change 41:135–145

    Article  Google Scholar 

  • Ho SYW (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol 38:409–414

    Article  Google Scholar 

  • Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58(3):367–380

    Article  PubMed  Google Scholar 

  • Huang SSF, Hwang S-Y, Lin T-P (2002) Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and East Asia. Mol Ecol 11:2349–2358

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Hung KH, Wang WK et al (2012) Evolutionary rates of commonly used nuclear and organelle markers of Arabidopsis relatives (Brassicaceae). Gene 499:194–201

    Article  CAS  PubMed  Google Scholar 

  • Jordon-Thaden I, Hase I, Al-Shehbaz I, Koch MA (2010) Molecular phylogeny and systematics of the genus Draba (Brassicaceae) and identification of its most closely related genera. Mol Phylogenet Evol 55:524–540

    Article  CAS  PubMed  Google Scholar 

  • Karl R, Koch MA (2013) A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Ann Bot 112:983–1001

    Article  PubMed  Google Scholar 

  • Khalilov II, Trifonova VI (1992) The comparative anatomical investigation of the petiole in representatives of the genus Crambe (Brassicaceae) in connection with its systematics and phylogeny. Bot Zhurn (Moscow and Leningrad) 77:33–44

    Google Scholar 

  • Kiefer C, Dobeš C, Sharbel TF, Koch MA (2009) Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera - A genus and continental-wide perspective. Mol Phylogenet Evol 52:303–311

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142

    Article  CAS  Google Scholar 

  • Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:6272–6277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koch MA, Dobeš C, Kiefer C et al (2007) Supernetwork identifies multiple events of plastid trnF (GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Karl R, Kiefer C, Al-Shehbaz IA (2010) Colonizing the American continent: systematics of the genus Arabis in North America (Brassicaceae). Am J Bot 97(6):1040–1057

    Article  PubMed  Google Scholar 

  • Kozyrenko MM, Artyukova EV, Zhuravlev YuN (2009) Independent species status of Iris vorobievii NS Pavlova, Iris mandshurica Maxim, and Iris humilis Georgi (Iridaceae): evidence from the nuclear and chloroplast genomes. Russ J Genet 45:1394–1402

    Article  CAS  Google Scholar 

  • Kuittinen H, Aguadé M (2000) Nucleotide variation at the chalcone isomerase locus in Arabidopsis thaliana. Genetics 155:863–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuittinen H, Aguadé M, Charlesworth D et al (2002) Primers for 22 candidate genes for ecological adaptations in Brassicaceae. Mol Ecol Notes 2:258–262

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhao B, Tan D, Wang J (2011) Phylogenetic relationships of Brassicaceae in China: insights from a non-coding chloroplast, mitochondrial, and nuclear DNA data set. Biochem Syst Ecol 39:600–608

    Article  CAS  Google Scholar 

  • Lu L, Fritsch PW, Cruz BC et al (2010) Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae). Mol Phylogenet Evol 57:364–379

    Article  PubMed  Google Scholar 

  • Magallon S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100(3):556–573

    Article  CAS  PubMed  Google Scholar 

  • Makry TV, Kazanovsky SG (2002) New finds of Megadenia bardunovii M. Pop. in Tunkinskaya valley. In: Problems of Botany of South Siberia and Mongolia. Proceedings of the 1st International Scientific-Practical Conference (Barnaul, 26.–28.11.2002), Barnaul, pp 42–44

  • Manchester SR, Chen Z-D, Lu A-M, Uemura K (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 47:1–42

    Article  Google Scholar 

  • Maximowicz CJ (1889) Flora Tangutica. Fasc 1. Typis Acad Imp, St. Petersburg, pp 76–77

  • Meredâ P Jr, Hodálová I, Mártonfi P et al (2008) Intraspecific variation in Viola suavis in Europe: parallel evolution of white-flowered morphotypes. Ann Bot 102:443–462

    Article  PubMed Central  PubMed  Google Scholar 

  • Mishiba K-I, Yamano K, Nakatsuka T et al (2009) Genetic relationships in the genus Gentiana based on chloroplast DNA sequence data and nuclear DNA content. Breed Sci 59:119–127

    Article  CAS  Google Scholar 

  • Möller M, Cronk QCB (1997) Phylogeny and disjunct distribution: evolution of Saintpaulia (Gesneriaceae). Proc R Soc Lond B 264:1827–1836

    Article  Google Scholar 

  • Mummenhoff K, Polster A, Mühlhausen A, Theißen G (2009) Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exp Bot 60:1503–1513

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Olowokudejo JD (1987) Taxonomic value of petiole anatomy in the genus Biscutella L. (Cruciferae). Bull Jard Bot Nat Belg 57:307–320

    Article  Google Scholar 

  • Parisod C, Besnard G (2007) Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755–2767

    Article  PubMed  Google Scholar 

  • Popov M (1954) Genera dua pro flora URSS nova Angiospermarum—Mannagettaea H. Smith (Orobanchaceae) et Megadenia Max. (Cruciferae). Bot Mater Gerb Bot Inst Komarova Akad Nauk SSSR 16:3–15

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Puşcaş M, Choler P, Tribsch A et al (2008) Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol Ecol 17:2417–2429

    Article  PubMed  Google Scholar 

  • Qiu Y-X, Fu C-X, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogen Evol 59:225–244

    Article  Google Scholar 

  • Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Slotte T, Ceplitis A, Neuffer B et al (2006) Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C barsa-pastoris based on chloroplast and nuclear DNA sequences. Am J Bot 93:1714–1724

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Vorob’ev DP, Voroshilov VN, Gorovoi PG (1976) A new species Megadenia Maxim. (Brassicaceae) in the Far East. Biulleten’ Biull Gl Bot Sada (Moscow) 101:58–61

    Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Article  Google Scholar 

  • Warwick SI, Mummenhoff K, Sauder CA et al (2010) Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst Evol 285:209–232

    Article  CAS  Google Scholar 

  • Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167–177

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014) Evolutionary diversifications of plants on the Qinghai–Tibetan Plateau. Front Genet 5:4. doi:10.3389/fgene.2014.00004

    PubMed Central  PubMed  Google Scholar 

  • Winkler M, Tribsch A, Paun O et al (2010) Pleistocene distribution range shifts were accompanied by breeding system divergence within Hornungia alpina (Brassicaceae) in the Alps. Mol Phylogenet Evol 54:571–582

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Cui Z, Liu G et al (2001) Quaternary geomorphological evolution of the Kunlun Pass area and uplift of the Qinghai–Xizang (Tibet) Plateau. Geomorphology 36:203–216

    Article  Google Scholar 

  • Wu F, Fang X, Ma Y et al (2007) Plio-Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet Sci Lett 257:160–169

    Article  CAS  Google Scholar 

  • Yue JP, Sun H, Baum DA et al (2009) Molecular phylogeny of Solms-laubachia (Brassicaceae) sl, based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. J Syst Evol 47:402–415

    Article  Google Scholar 

  • Zhou T, Lu L, Yang G, Al-Shehbaz IA (2001) Brassicaceae (Cruciferae). In: Wu CY, Raven PH (eds) Flora of China, Science Press and Missouri Bot Gard Press, Beijing and St Louis, 8:1–193

  • Zhou S, Wang X, Wang J, Xu L (2006) A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan Plateau. Quatern Int 154–155:44–51

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the programme of the Presidium of the Russian Academy of Sciences “Biological Diversity”, project Genetic Diversity of Natural Populations of Far East Flora (No. 12-I-P30-02). We are grateful to Drs. A.V. Verkhozina and S.G. Kazanovsky (SIPPB SB RAS, Irkutsk, Russia), I.V. Tatanov (Komarov Botanical Institute, St.-Petersburg, Russia), and R.V. Doudkin (FEFU, Vladivostok, Russia) for kindly providing Megadenia samples. The authors thank anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Artyukova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyukova, E.V., Kozyrenko, M.M., Boltenkov, E.V. et al. One or three species in Megadenia (Brassicaceae): insight from molecular studies. Genetica 142, 337–350 (2014). https://doi.org/10.1007/s10709-014-9778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-014-9778-1

Keywords

Navigation