Skip to main content

Advertisement

Log in

Burst speciation processes and genomic expansion in the neotropical annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The extent to which genome sizes and other nucleotypic factors influence the phyletic diversification of lineages has long been discussed but remains largely unresolved. In the present work, we present evidence that the genomes of at least 16 species of the neotropical rivulid killifish genus Austrolebias are unusually large, with an average DNA content of about 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). They are thus larger than the genomes of very nearly all other diploid, i.e. non-(paleo) polyploid species of actinopterygian fishes so far reported. Austrolebias species appear to be conventional diploids in all other respects and there is no reason to believe that they arise from polyploid ancestors. The genome sizes reported for other rivulid killifishes, including a putative sister group, are considerably smaller and fall within the range typical of most other cyprinodontoid species. Therefore, it appears that the ancestor(s) of contemporary Austrolebias have undergone one or more episodes of genome expansion encompassing sudden speciation process during the Pleistocene. In addition, these findings are consistent with the hypothesis of a positive correlation between species richness and genome size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723

    Article  Google Scholar 

  • Arezo MJ, Pereiro L, Berois N (2005) Early development in the annual fish Cynolebias viarius. J Fish Biol 66:1357–1370. doi:10.1111/j.0022-1112.2005.00688.x

    Article  Google Scholar 

  • Arim M, Abades SR, Laufer G, Loureiro M, Marquet PA (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119:147–153. doi:10.1111/j.1600-0706.2009.17768.x

    Article  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Book  Google Scholar 

  • Belote DF, Costa WJEM (2002) Reproductive behavior patterns in the neotropical annual fish genus Simpsonichthys Carvalho, 1959 (Cyprinodontiformes, Rivulidae): description and phylogenetic implications. Bol Mus Nac (Rio de J.) 489:1–10

    Google Scholar 

  • Belote DF, Costa WJEM (2003) Reproductive behavior of the Brazilian annual fish Cynolebias albipunctatus Costa & Brasil, 1991 (Teleostei, Cyprinodontiformes, Rivulidae): a new report of sound production in fishes. Arq Mus Nac (Rio de J.) 61:241–244

    Google Scholar 

  • Belote DF, Costa WJEM (2004) Reproductive behavior patterns in three species of the South American annual fish genus Austrolebias Costa, 1998 (Cyprinodontiformes, Rivulidae). Bol Mus Nac (Rio de J.) 514:1–7

    Google Scholar 

  • Berois N, Arezo MJ, Papa NG, Clivio GA (2012) Annual fish: development adaptations for an extreme environment. Wiley Interdiscip Rev Dev Biol 1:595–602. doi:10.1002/wdev.39

    Article  PubMed  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971. doi:10.1073/pnas.76.4

    Article  CAS  PubMed  Google Scholar 

  • Cardozo V (1999) Tasa Metabólica y excreción del nitrógeno en peces anuales Cynolebias viarius (Cyprinodontiformes). MSc. Dissertation. Thesis. PEDECIBA, Facultad de Ciencias, UDELAR, Uruguay

  • Carvalho ML, Oliveira C, Foresti F (1998) Nuclear DNA content of thirty species of Neotropical fishes. Genet Mol Biol 21:47–54

    Article  CAS  Google Scholar 

  • Ciudad J, Cid E, Velasco A, Lara JM, Aijón J, Orfao A (2002) Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. Cytometry 48:20–25. doi:10.1002/cyto.10100

    Article  CAS  PubMed  Google Scholar 

  • Costa WJEM (1998) Phylogeny and classification of Rivulidae revisited: origin and evolution of annualism and miniaturization in rivulid fishes (Cyprinodontiformes: Aplocheiloidei). J Comp Biol 3:33–94

    Google Scholar 

  • Costa WJEM (2006) The South American annual killifish genus Austrolebias (Teleostei: Cyprinodontiformes: Rivulidae): phylogenetic relationships, descriptive morphology and taxonomic revision. Zootaxa 1213:1–162

    Google Scholar 

  • Denton TE (1973) Fish chromosome methodology. CE Thomas Springfield, Illinois

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) Bayesian evolutionary analysis by sampling trees BEAST. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214

    Article  PubMed Central  PubMed  Google Scholar 

  • Elder JF, Turner BJ, Thomerson JE, Taphorn DC (1993) Karyotypes of nine Venezuelan annual killifishes (Cyprinodontidae), with comments on karyotype differentiation in annual killifishes. Ichthyol Explor Freshw 4:261–268

    Google Scholar 

  • Errea A, Danulat E (2001) Growth of the annual fish Cynolebias viarius (Cyprinodontiformes), in the natural habitat compared to laboratory conditions. Environ Biol Fishes 61:261–268

    Article  Google Scholar 

  • Fernández AS, Rosillo JC, Casanova G, Olivera-Bravo S (2011) Proliferation zones in the brain of adult fish Austrolebias (Cyprinodontiformes: Rivulidae): a comparative study. Neuroscience 189:12–24

    Article  PubMed  Google Scholar 

  • Ferrer J, Malabarba LR, Costa WJEM (2008) Austrolebias paucisquama (Cyprinodontiformes: Rivulidae), a new species of annual killifish from southern Brazil. Neotrop Ichthyol 6:175–180

    Article  Google Scholar 

  • García G (2006) Multiple simultaneous speciation in killifishes of the Cynolebias adloffi species complex (Cyprinodontiformes, Rivulidae) from phylogeography and chromosome data. J Zool Syst Evol Res 44:75–87. doi:10.1111/j.1439-0469.2005.00346.x

    Article  Google Scholar 

  • García G, Scvortzoff E, Máspoli MC, Vaz-ferreira R (1993) Analysis of karyotypic evolution in natural populations of Cynolebias (Pisces, Cyprinodontiformes, Rivulidae) using banding techniques. Cytologia 58:85–94

    Article  Google Scholar 

  • García G, Scvortzoff E, Hernández A (1995) Karyotypic heterogeneity in South American annual killifishes of the genus Cynolebias (Pisces, Cyprinodontiformes, Rivulidae). Cytologia 60:103–110

    Article  Google Scholar 

  • García G, Wlasiuk G, Lessa EP (2000) High levels of mitochondrial cytochrome b divergence in the annual killifishes of the genus Cynolebias (Cyprinodontiformes, Rivulidae). Zool J Linn Soc 129:93–110

    Article  Google Scholar 

  • García G, Lalanne AI, Aguirre G, Cappetta M (2001) Chromosome evolution in annual killifish genus Cynolebias and mitochondrial phylogenetic analysis. Chromosome Res 9:93–100

    Article  Google Scholar 

  • García G, Alvarez-Valin F, Gómez N (2002) Mitochondrial genes: signals and noise in phylogenetic reconstruction within killifish genus Cynolebias (Cyprinodontiformes, Rivulidae). Biol J Linn Soc Lond 76:49–59

    Google Scholar 

  • García D, Loureiro M, Tassino B (2008) Reproductive behavior in the fish Austrolebias reicherti Loureiro & García 2004 (Cyprinodontiformes: Rivulidae). Neotrop Ichthyol 6:243–248

    Article  Google Scholar 

  • García G, Loureiro M, Berois N, Arezo MJ, Casanova G, Olivera A (2009) Pattern of differentiation in the annual killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) from a biosphere reserve site in South America: a multidisciplinary approach. Biol J Linn Soc Lond 98:620–635

    Article  Google Scholar 

  • García G, Gutiérrez V, Vergara J, Calviño P, Duarte A, Loureiro M (2012) Patterns of population differentiation in annual killifishes from the Paraná–Uruguay–La Plata Basin: the role of vicariance and dispersal. J Biogeogr 39:1707–1719. doi:10.1111/j.1365-2699.2012.02722.x

    Article  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez V, Arezo MJ, García G (2007) Characterization of partial Hox genes sequences in annual fishes of the Cynolebiatinae subfamily (Cyprinodontiformes: Rivulidae). Gen Mol Biol 30:494–503

    Article  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192. doi:10.2307/2992540

    Google Scholar 

  • Hinegardner R, Rosen DE (1972) Cellular DNA content and evolution of teleostean fishes. Am Nat 106:621–644

    Article  CAS  Google Scholar 

  • Kimura MA (1980) Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kligerman AD, Bloom SE (1977) Rapid chromosome preparations from solid tissues of fishes. J Fish Res Board Can 34:266–269

    Article  Google Scholar 

  • Kornfield IL (1984) Descriptive genetics of cichlid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp 591–616

    Chapter  Google Scholar 

  • Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233. doi:10.1007/s11692-010-9093-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamatsch DK, Steinlein C, Schmid M, Schartl M (2000) Non-invasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecillia Formosa. Cytometry 39:91–95

    Article  CAS  PubMed  Google Scholar 

  • Loureiro M, de Sá RO (1996) External morphology of the chorion of the annual fishes Cynolebias (Cyprinodontiformes: Rivulidae). Copeia 1996:1016–1022

    Article  Google Scholar 

  • Loureiro M, de Sá RO (1998) Osteological analysis of the killifish genus Cynolebias (Cyprinodontiformes: Rivulidae). J Morphol 238:109–262

    Article  Google Scholar 

  • Loureiro M, García G (2004) Cynolebias reicherti a new annual fish (Rivulidae: Cynolebiatinae) from southern Laguna Merim basin. Acta Zool Lilloana 48:13–25

    Google Scholar 

  • Loureiro M, Duarte A, Zarucki M (2011) A new species of Austrolebias Costa (Cyprinodontiformes: Rivulidae) from northeastern Uruguay, with comments on distribution patterns. Neotrop Ichthyol 9:335–342

    Google Scholar 

  • Mabble BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182. doi:10.1111/j.1469-7998.2011.00829.x

    Google Scholar 

  • Mank JE, Avise JC (2006) Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes. Proc R Soc B 273:33–38. doi:10.1098/rspb 2005.3295

    Article  PubMed  Google Scholar 

  • Máspoli MC, García G (1988) Estudio comparativo del cariotipo de especies del género Cynolebias Steindachner, 1876 (Cyprinodontiformes, Rivulidae). Bol Soc Zool Uruguay 4:27–33

    Google Scholar 

  • Medrano JF, Aasen E, Sharrow L (1990) DNA extraction from nucleated red blood cells. Biotechniques 8:43

    CAS  PubMed  Google Scholar 

  • Moshgani M, Van Dooren TJM (2011) Maternal and paternal contributions to egg size and egg number variation in the blackfin pearl killifish Austrolebias nigripinnis. Evol Ecol 25:1179–1195

    Article  Google Scholar 

  • Ojima Y, Yamamoto K (1990) Cellular DNA contents of fishes determined by flow cytometry. La Kromosomo II 57:1871–1888

    Google Scholar 

  • Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR. Department of Zoology and Kewalo Marine Laboratory, Univ. Hawaii, Honolulu

    Google Scholar 

  • Passos C, Tassino B, Loureiro M, Rosenthal GG (2013) Intra- and intersexual selection on male body size in the annual killifish Austrolebias charrua. Behav Process 96:20–26.

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2009) Tracer v.1.5. http://beast.bio.ed.ac.uk/Tracer

  • Rebollo R, Horard B, Hubert B, Vieira C (2010) Jumping genes and epigenetics: towards new species. Gene 454:1–7. doi:10.1016/j.gene.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  • Reichwald K, Lauber C, Nanda I, Kirschner J, Hartmann N, Schories S, Gausmann U, Taudien S, Schilhabel MB, Szafranski K et al (2009) High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol 10:R16.1–R16.17. doi:10.1186/gb-2009-10-2-r16

    Article  Google Scholar 

  • Rodríguez F, Oliver JL, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:482–501

    Article  Google Scholar 

  • Scheel JJ (1972) Rivuline karyotypes and their evolution (Rivulinae, Cyprinodontidae, Pisces). Z Zool Syst Evol Forsch 10:180–209

    Article  Google Scholar 

  • Simpson BRC (1979) The phenology of annual killifishes. Symp Zool Soc Lond 44:243–261

    Google Scholar 

  • Smith EM, Gregory TR (2009) Patterns of genome size diversity in the ray-finned fishes. Hydriobiologia 625:1–25

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) ver. 4.0b5. Sinauer Associates, MA

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak FM, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaz-Ferreira R, Sierra B, Scaglia S (1964) Eco-etología de la reproducción en los peces del género Cynolebias Steindachner, 1876. Apar Arch Soc Biol Montev 26:44–49

    Google Scholar 

  • Vinogradov AE (1998) Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31:100–109

    Article  CAS  PubMed  Google Scholar 

  • Walford RL, Liu BH (1965) Husbandry, life span, and growth rate of the annual fish, Cynolebias adloffi. Exp Gerontol 1:161–171

    Article  Google Scholar 

  • Wourms JP (1972) The developmental biology of annual fishes. II. Naturally occurring dispersion and reaggregation of blastomeres during the development of annual fish eggs. J Exp Zool 182:169–200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following colleagues for kindly providing the following fish specimens: L. Malabarba (A. adloffi) and W.J.E.M. Costa (C. melanotaenia) from RS Brazil (1991 and 1997, respectively); V. Etzel and G. Hessfeld (A. vandenbergi, A. patriciae) from Paraguay (2004); P. Calviño (A. bellottii, A. nigripinnis, A. monstrosus, A. elongatus, A. nonoiuliensis, A. robustus, A. juanlangi, A. periodicus) from Chaco, Salta and Buenos Aires Provinces as well as from aquarium strains; M. Loureiro, S. Serra and A. Duarte (A. quirogay, A. elongatus, A. reicherti, A. vazferreirai, A. nigripinnis, A. cinereus) from different ponds of Uruguay and D. Rodriguez-Ithurralde and N. Papa for zebrafish (Danio rerio) donation. The authors are also grateful to the Japanese government for the donation of equipment. G.G., V.G., and G.F. acknowledge the support of SNI (ANII, Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. García.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 98 kb)

Supplementary material 2 (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, G., Gutiérrez, V., Ríos, N. et al. Burst speciation processes and genomic expansion in the neotropical annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae). Genetica 142, 87–98 (2014). https://doi.org/10.1007/s10709-014-9756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-014-9756-7

Keywords

Navigation