, Volume 142, Issue 1, pp 59–72 | Cite as

Genetic variation in the green anole lizard (Anolis carolinensis) reveals island refugia and a fragmented Florida during the quaternary

  • Marc Tollis
  • Stéphane Boissinot


The green anole lizard (Anolis carolinensis) is a model organism for behavior and genomics that is native to the southeastern United States. It is currently thought that the ancestors of modern green anoles dispersed to peninsular Florida from Cuba. However, the climatic changes and geological features responsible for the early diversification of A. carolinensis in North America have remained largely unexplored. This is because previous studies (1) differ in their estimates of the divergence times of populations, (2) are based on a single genetic locus or (3) did not test specific hypotheses regarding the geologic and topographic history of Florida. Here we provide a multi-locus study of green anole genetic diversity and find that the Florida peninsula contains a larger number of genetically distinct populations that are more diverse than those on the continental mainland. As a test of the island refugia hypothesis in Pleistocene Florida, we use a coalescent approach to estimate the divergence times of modern green anole lineages. We find that all demographic events occurred during or after the Upper Pliocene and suggest that green anole diversification was driven by population divergence on interglacial island refugia in Florida during the Lower Pleistocene, while the region was often separated from continental North America. When Florida reconnected to the mainland, two separate dispersal events led to the expansion of green anole populations across the Atlantic Seaboard and Gulf Coastal Plain.


Anolis carolinensis Florida Green anole Historical biogeography Coalescent Pleistocene 



We would like to thank Sela Sherr (Queens College) for his help collecting anoles in the field, and Tonia Hsieh (Temple University) for sharing tissue samples from Florida. This research was supported by PSC-CUNY grant 63799-00-41 and NIH grant R15GM096267-01 to S.B. Fieldwork was funded by a CUNY Doctoral Research Grant and an American Museum of Natural History Theodore Roosevelt Memorial Grant to M.T. The work was conducted in part with equipment from the Core Facility for Imaging, Cellular and Molecular Biology at Queens College and was supported, in part, under National Science Foundation Grants CNS-0958379 and CNS-0855217 and the City University of New York High Performance Computing Center.

Supplementary material

10709_2013_9754_MOESM1_ESM.docx (270 kb)
Supplementary material 1 (DOCX 269 kb)


  1. Alfoldi J, Di Palma F, Grabherr M, Williams C, Kong L et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587–591. doi: 10.1038/nature10390 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bishop DC, Echternacht AC (2004) Emergence behavior and movements of winter-aggregated green anoles (Anolis carolinensis) and the thermal characteristics of their crevices in Tennessee. Herpetologica 60(2):168–177. doi: 10.1655/02-34 CrossRefGoogle Scholar
  3. Brito PH, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135(3):439–455. doi: 10.1007/s10709-008-9293-3 PubMedCrossRefGoogle Scholar
  4. Buth DG, Gorman GC, Lieb CS (1980) Genetic divergence between Anolis carolinensis and its Cuban progenitor, Anolis porcatus. J Herpetol 14(3):279–284CrossRefGoogle Scholar
  5. Campbell-Staton SC, Goodman RM, Backstrom N, Edwards SV, Losos JB et al (2012) Out of Florida: mtDNA reveals patterns of migration and Pleistocene range expansion of the Green Anole lizard (Anolis carolinensis). Ecol Evol 2(9):2274–2284. doi: 10.1002/ece3.324 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A et al. (2010) Geneious v5.5.
  7. Earl DA, Vonholdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361CrossRefGoogle Scholar
  8. Eckalbar WL, Lasku E, Infante CR, Elsey RM, Markov GJ et al (2012) Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol 363(1):308–319. doi: 10.1016/j.ydbio.2011.11.021 PubMedCrossRefGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  10. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi: 10.1111/j.1755-0998.2010.02847.x PubMedCrossRefGoogle Scholar
  11. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925PubMedGoogle Scholar
  12. Garrick RC, Sunnucks P, Dyer RJ (2010) Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evol Biol 10(1):118PubMedCentralPubMedCrossRefGoogle Scholar
  13. Glor RE, Losos JB, Larson A (2005) Out of Cuba: overwater dispersal and speciation among lizards in the Anolis carolinensis subgroup. Mol Ecol 14(8):2419–2432. doi: 10.1111/j.1365-294X.2005.02550.x PubMedCrossRefGoogle Scholar
  14. Goodman RM, Echternacht AC, Hall JC, Deng LD, Welch JN (2013) Influence of geography and climate on patterns of cell size and body size in the lizard Anolis carolinensis. Integr Zool 8(2):184–196. doi: 10.1111/1749-4877.12041 PubMedCrossRefGoogle Scholar
  15. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A (2011) Bayesian inference of ancient human demography from individual genome sequences. Nat Genet 43(10):1031–1034. doi: 10.1038/ng.937 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137. doi: 10.1007/978-1-59745-251-9_6 PubMedCrossRefGoogle Scholar
  17. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  18. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66(4):591–600PubMedGoogle Scholar
  19. Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289. doi: 10.1186/1471-2148-8-289 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27(3):570–580. doi: 10.1093/molbev/msp274 PubMedCrossRefGoogle Scholar
  21. Ho SY, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22(7):1561–1568. doi: 10.1093/molbev/msi145 PubMedCrossRefGoogle Scholar
  22. Holman JA (1995) Pleistocene amphibians and reptiles in North America, vol 32. Oxford University Press, OxfordGoogle Scholar
  23. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132(2):583–589PubMedGoogle Scholar
  24. Knowles LL, Carstens BC (2007) Estimating a geographically explicit model of population divergence. Evolution 61(3):477–493. doi: 10.1111/j.1558-5646.2007.00043.x PubMedCrossRefGoogle Scholar
  25. Lane E (1994) Florida’s geological history and geological resources. Special publication (Florida Geological Survey (1989)); No. 35. Published for the Florida Geological Survey, Tallahassee, FLGoogle Scholar
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948 doi: 10.1093/bioinformatics/btm404 Google Scholar
  27. Leaché AD, Harris RB, Rannala B, Yang Z (2013) The influence of gene flow on species tree estimation: a simulation study. Syst Biol. doi: 10.1093/sysbio/syt049
  28. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452. doi: 10.1093/bioinformatics/btp187 PubMedCrossRefGoogle Scholar
  29. Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. Organisms and environments, vol 10. University of California Press, BerkeleyGoogle Scholar
  30. Lovern MB, Holmes MM, Wade J (2004) The green anole (Anolis carolinensis): a reptilian model for laboratory studies of reproductive morphology and behavior. Inst Lab Animal Res J 45(1):54–64Google Scholar
  31. Macey JR, Schulte JA 2nd, Larson A, Tuniyev BS, Orlov N et al (1999) Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Mol Phylogenet Evol 12(3):250–272. doi: 10.1006/mpev.1999.0615 PubMedCrossRefGoogle Scholar
  32. McCormack JE, Heled J, Delaney KS, Peterson AT, Knowles LL (2011) Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution 65(1):184–202. doi: 10.1111/j.1558-5646.2010.01097.x PubMedCrossRefGoogle Scholar
  33. Michaud EJ, Echternacht AC (1995) Geographic variation in the life history of the lizard Anolis carolinensis and support for the pelvic constraint model. J Herpetol 29(1):86–97. doi: 10.2307/1565090 CrossRefGoogle Scholar
  34. Neill W (1957) Historical biogeography of present-day Florida, vol 2. Bulletin of the Florida State Museum, vol 7. University of Florida, GainesvilleGoogle Scholar
  35. Peng Y, Yang Z, Zhang H, Cui C, Qi X et al (2011) Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol 28(2):1075–1081. doi: 10.1093/molbev/msq290 PubMedCrossRefGoogle Scholar
  36. Peterson GI, Masel J (2009) Quantitative prediction of molecular clock and ka/ks at short timescales. Mol Biol Evol 26(11):2595–2603. doi: 10.1093/molbev/msp175 PubMedCrossRefGoogle Scholar
  37. Petuch EJ (2004) Cenozoic seas : the view from Eastern North America. CRC Press, Boca RatonGoogle Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedGoogle Scholar
  39. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. doi: 10.1093/sysbio/sys029 PubMedCrossRefGoogle Scholar
  40. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138CrossRefGoogle Scholar
  41. Salicini I, Ibanez C, Juste J (2011) Multilocus phylogeny and species delimitation within the Natterer’s bat species complex in the Western Palearctic. Mol Phylogenet Evol 61(3):888–898. doi: 10.1016/j.ympev.2011.08.010 PubMedCrossRefGoogle Scholar
  42. Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15(14):4261–4293. doi: 10.1111/j.1365-294X.2006.03061.x PubMedCrossRefGoogle Scholar
  43. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989. doi: 10.1086/319501 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedGoogle Scholar
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 PubMedCrossRefGoogle Scholar
  46. Tishkoff SA, Williams SM (2002) Genetic analysis of African populations: human evolution and complex disease. Nat Rev Genet 3(8):611–621. doi: 10.1038/nrg865 PubMedGoogle Scholar
  47. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC et al (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39(1):31–40. doi: 10.1038/ng1946 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Tollis M, Ausubel G, Ghimire D, Boissinot S (2012) Multi-locus phylogeographic and population genetic analysis of Anolis carolinensis: historical demography of a genomic model species. PLoS One 7(6):e38474. doi: 10.1371/journal.pone.0038474 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Wade J (2012) Sculpting reproductive circuits: relationships among hormones, morphology and behavior in anole lizards. Gen Comp Endocrinol 176(3):456–460. doi: 10.1016/j.ygcen.2011.12.011 PubMedCrossRefGoogle Scholar
  50. Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17(10):2321–2328. doi: 10.1111/j.1365-294X.2008.03742.x PubMedCrossRefGoogle Scholar
  51. Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD et al (2007) Localizing recent adaptive evolution in the human genome. PLoS Genet 3(6):e90. doi: 10.1371/journal.pgen.0030090 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23(1):212–226. doi: 10.1093/molbev/msj024 PubMedCrossRefGoogle Scholar
  53. Zheng Y, Peng R, Kuro-o M, Zeng X (2011) Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (order Caudata). Mol Biol Evol 28(9):2521–2535. doi: 10.1093/molbev/msr072 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biology Department, Queens CollegeCity University of New York (CUNY)New YorkUSA
  2. 2.Ecology, Evolutionary Biology and BehaviorThe Graduate Center of CUNYNew YorkUSA
  3. 3.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations